Группировка данных: получение вариационного ряда с равными интервалами
Коэффициент Спирмена
Коэффициент Фехнера
Коэффициент Кендалла
Множественная регрессия
Нелинейная регрессия
Уравнение регрессии
Аналитическое выравнивание
Расчет параметров тренда
Ошибка аппроксимации
Новое на сайте
Задачи параметрического программирования
Критерий Манна-Уитни
Интервалы возрастания и убывания функции
Коэффициент контингенции
Коэффициент конкордации
Смешанное произведение векторов
Метод Фибоначчи

Корреляционный анализ. Подробное руководство к решению задач

1. Использование графического метода.
Графический метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.

поле корреляции


На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов). Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии.
Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (ε) и независимой переменной (x).
Формально критерий МНК можно записать так:
S = ∑(yi - y*i)2 → min
Система нормальных уравнений.
a•n + b∑x = ∑y
a∑x + b∑x2 = ∑y•x
Для наших данных система уравнений имеет вид
30a + 5763 b = 21460
5763 a + 1200261 b = 3800360
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем b = -3.46, a = 1379.33
Уравнение регрессии:
y = -3.46 x + 1379.33

2. Расчет параметров уравнения регрессии.
Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение


1.1. Коэффициент корреляции
Ковариация.

Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X высокая и обратная.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = -3.46 x + 1379.33

Теоретическое уравнение регрессии


Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент b = -3.46 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -3.46.
Коэффициент a = 1379.33 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь обратная.
1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:


Коэффициент эластичности меньше 1. Следовательно, при изменении Х на 1%, Y изменится менее чем на 1%. Другими словами - влияние Х на Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения Sx приведет к уменьшению среднего значения Y на 0.74 среднеквадратичного отклонения Sy.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Дисперсионный анализ.
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
∑(yi - ycp)2 = ∑(y(x) - ycp)2 + ∑(y - y(x))2
где
∑(yi - ycp)2 - общая сумма квадратов отклонений;
∑(y(x) - ycp)2 - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
∑(y - y(x))2 - остаточная сумма квадратов отклонений.
Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:

Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy.
1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= -0.742 = 0.5413
т.е. в 54.13 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - средняя. Остальные 45.87 % изменения Y объясняются факторами, не учтенными в модели.

x

y

x 2

y 2

x • y

y(x)

(yi-ycp) 2

(y-y(x))2

(xi-xcp)2

|y - yx|:y

161

790

25921

624100

127190

822.83

5575.11

1077.82

967.21

0.0416

183

570

33489

324900

104310

746.79

21121.78

31253.79

82.81

0.31

149

860

22201

739600

128140

864.31

20928.44

18.56

1857.61

0.005009

119

1010

14161

1020100

120190

968

86828.44

1763.76

5343.61

0.0416

230

520

52900

270400

119600

584.33

38155.11

4138.64

1436.41

0.12

201

650

40401

422500

130650

684.57

4268.44

1195.12

79.21

0.0532

278

570

77284

324900

158460

418.42

21121.78

22976.29

7378.81

0.27

219

620

47961

384400

135780

622.35

9088.44

5.54

723.61

0.003796

180

730

32400

532900

131400

757.16

215.11

737.5

146.41

0.0372

185

730

34225

532900

135050

739.87

215.11

97.5

50.41

0.0135

139

690

19321

476100

95910

898.87

641.78

43627.96

2819.61

0.3

129

1060

16641

1123600

136740

933.44

118795.11

16017.94

3981.61

0.12

91

1860

8281

3459600

169260

1064.78

1310261.78

632367.41

10221.21

0.43

132

840

17424

705600

110880

923.07

15541.78

6900.38

3612.01

0.0989

160

800

25600

640000

128000

826.29

7168.44

690.99

1030.41

0.0329

290

490

84100

240100

142100

376.94

50775.11

12781.94

9584.41

0.23

160

800

25600

640000

128000

826.29

7168.44

690.99

1030.41

0.0329

231

510

53361

260100

117810

580.88

42161.78

5023.38

1513.21

0.14

316

450

99856

202500

142200

287.07

70401.78

26544.89

15351.21

0.36

213

540

45369

291600

115020

643.09

30741.78

10628.09

436.81

0.19

138

820

19044

672400

113160

902.33

10955.11

6778.16

2926.81

0.1

139

690

19321

476100

95910

898.87

641.78

43627.96

2819.61

0.3

180

580

32400

336400

104400

757.16

18315.11

31384.56

146.41

0.31

230

510

52900

260100

117300

584.33

42161.78

5525.29

1436.41

0.15

180

740

32400

547600

133200

757.16

608.44

294.36

146.41

0.0232

210

630

44100

396900

132300

653.46

7281.78

550.47

320.41

0.0372

290

480

84100

230400

139200

376.94

55381.78

10620.79

9584.41

0.21

270

560

72900

313600

151200

446.07

24128.44

12979.45

6068.41

0.2

210

550

44100

302500

115500

653.46

27335.11

10704.41

320.41

0.19

150

810

22500

656100

121500

860.85

8961.78

2585.89

1772.41

0.0628

5763

21460

1200261

17408000

3800360

21460

2056946.67

943589.84

93188.7

4.42





2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=28 находим tкрит:
tкрит (n-m-1;α/2) = (28;0.025) = 2.048
где m = 1 - количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал).

Доверительный интервал для коэффициента корреляции

r(-0.9072;-0.5642)
2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S2y = 33699.64 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

Sy = 183.57 - стандартная ошибка оценки (стандартная ошибка регрессии).
Sa - стандартное отклонение случайной величины a.

Sb - стандартное отклонение случайной величины b.


2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 211

(1379.33 -3.46*211 ± 72.48)
(577.53;722.49)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bxi ± ε)
где

xi

y = 1379.33 + -3.46xi

εi

ymin

ymax

161

822.83

384.09

438.74

1206.92

183

746.79

382.34

364.45

1129.13

149

864.31

385.84

478.46

1250.15

119

968

392.64

575.37

1360.64

230

584.33

385.02

199.32

969.35

201

684.57

382.33

302.24

1066.9

278

418.42

396.55

21.87

814.97

219

622.35

383.61

238.75

1005.96

180

757.16

382.47

374.69

1139.62

185

739.87

382.28

357.6

1122.15

139

898.87

387.73

511.14

1286.6

129

933.44

390

543.44

1323.43

91

1064.78

401.95

662.84

1466.73

132

923.07

389.28

533.79

1312.35

160

826.29

384.21

442.07

1210.5

290

376.94

400.74

-23.8

777.69

160

826.29

384.21

442.07

1210.5

231

580.88

385.17

195.71

966.04

316

287.07

411.51

-124.44

698.59

213

643.09

383.04

260.05

1026.13

138

902.33

387.94

514.39

1290.27

139

898.87

387.73

511.14

1286.6

180

757.16

382.47

374.69

1139.62

230

584.33

385.02

199.32

969.35

180

757.16

382.47

374.69

1139.62

210

653.46

382.81

270.65

1036.27

290

376.94

400.74

-23.8

777.69

270

446.07

394.03

52.04

840.11

210

653.46

382.81

270.65

1036.27




С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y).
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).
Табличное значение определяется в зависимости от уровня значимости (α) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-α) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости α.
tкрит (n-m-1;α/2) = (28;0.025) = 2.048

Поскольку 5.75 > 2.048, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 11.47 > 2.048, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - tкрит Sb; b + tкрит Sb)
(-3.4565 - 2.048 • 0.6; -3.4565 + 2.048 • 0.6)
(-4.6881;-2.2249)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - tкрит Sa; a + tкрит Sa)
(1379.3255 - 2.048 • 120.28; 1379.3255 + 2.048 • 120.28)
(1132.9836;1625.6673)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно α принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=28, Fтабл = 4.2
Поскольку фактическое значение F > Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:


Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.
Обнаружение автокорреляции
1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения εi с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения εi (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости εi от εi-1

Обнаружение автокорреляции графическим методом
Рисунок – Обнаружение автокорреляции графическим методом


Судя по графику, определенной зависимости не наблюдается.
2. Коэффициент автокорреляции.

Если коэффициент автокорреляции rei < 0.5, то есть основания утверждать, что автокорреляция отсутствует.

Выборочные средние.



Выборочные дисперсии:


Среднеквадратическое отклонение



Поскольку, rei < 0.1, то можно с уверенностью сказать, что автокорреляция отсутствует.

3. Критерий Дарбина-Уотсона.
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин ei.

y

y(x)

ei = y-y(x)

e2

(ei - ei-1)2

790

822.83

-32.83

1077.82

0

570

746.79

-176.79

31253.79

20723.67

860

864.31

-4.31

18.56

29749.1

1010

968

42

1763.76

2144.18

520

584.33

-64.33

4138.64

11305.94

650

684.57

-34.57

1195.12

885.76

570

418.42

151.58

22976.29

34651.78

620

622.35

-2.35

5.54

23695.38

730

757.16

-27.16

737.5

615.2

730

739.87

-9.87

97.5

298.68

690

898.87

-208.87

43627.96

39600.46

1060

933.44

126.56

16017.94

112516.69

1860

1064.78

795.22

632367.41

447097.24

840

923.07

-83.07

6900.38

771382.48

800

826.29

-26.29

690.99

3224.17

490

376.94

113.06

12781.94

19416.74

800

826.29

-26.29

690.99

19416.74

510

580.88

-70.88

5023.38

1988.18

450

287.07

162.93

26544.89

54663.29

540

643.09

-103.09

10628.09

70765.94

820

902.33

-82.33

6778.16

431.11

690

898.87

-208.87

43627.96

16013.26

580

757.16

-177.16

31384.56

1005.92

510

584.33

-74.33

5525.29

10572.9

740

757.16

-17.16

294.36

3269.03

630

653.46

-23.46

550.47

39.76

480

376.94

103.06

10620.79

16007.15

560

446.07

113.93

12979.45

118.16

550

653.46

-103.46

10704.41

47258.2

810

860.85

-50.85

2585.89

2767.86

943589.84

1761624.95




Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:


Критические значения d1 и d2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 30 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d1 < DW и d2 < DW < 4 - d2.
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Поскольку 1.5 < 1.87 < 2.5, то автокорреляция остатков отсутствует.
Для более надежного вывода целесообразно обращаться к табличным значениям.
По таблице Дарбина-Уотсона для n=30 и k=1 (уровень значимости 5%) находим: d1 = 1.35; d2 = 1.49.
Поскольку 1.35 < 1.87 и 1.49 < 1.87 < 4 - 1.49, то автокорреляция остатков отсутствует.
Проверка наличия гетероскедастичности.
1) Методом графического анализа остатков.
В этом случае по оси абсцисс откладываются значения объясняющей переменной X, а по оси ординат либо отклонения ei, либо их квадраты e2i.
Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии гетероскедастичности.
2) При помощи теста ранговой корреляции Спирмена.
Коэффициент ранговой корреляции Спирмена.
Присвоим ранги признаку ei и фактору X. Найдем сумму разности квадратов d2.
По формуле вычислим коэффициент ранговой корреляции Спирмена.

X

ei

ранг X, dx

ранг ei, dy

(dx - dy)2

161

32.83

10

16

36

183

176.79

12

26

196

149

4.31

7

10

9

119

-42

2

8

36

230

64.33

18

19

1

201

34.57

14

17

9

278

-151.58

21

3

324

219

2.35

17

9

64

180

27.16

11

15

16

185

9.87

13

11

4

139

208.87

6

28

484

129

-126.56

3

4

1

91

-795.22

1

1

0

132

83.07

4

23

361

160

26.29

9

14

25

290

-113.06

22

6

256

160

26.29

9

14

25

231

70.88

19

20

1

316

-162.93

23

2

441

213

103.09

16

24

64

138

82.33

5

22

289

139

208.87

6

28

484

180

177.16

11

27

256

230

74.33

18

21

9

180

17.16

11

12

1

210

23.46

15

13

4

290

-103.06

22

7

225

270

-113.93

20

5

225

210

103.46

15

25

100

150

50.85

8

18

100

4046





Связь между признаком ei и фактором X слабая и прямая.
Оценка коэффициента ранговой корреляции Спирмена.
Значимость коэффициента ранговой корреляции Спирмена

По таблице Стьюдента находим tтабл:
tтабл (n-m-1;α/2) = (28;0.05/2) = 2.048
Поскольку Tнабл < tтабл , то принимаем гипотезу о равенстве 0 коэффициента ранговой корреляции. Другими словами, коэффициент ранговой корреляции статистически - не значим.
Интервальная оценка для коэффициента корреляции (доверительный интервал).

Доверительный интервал для коэффициента ранговой корреляции
r(-0.2703;0.4701)
Проверим гипотезу H0: гетероскедастичность отсутствует.
Поскольку 2.048 > 0.53, то гипотеза об отсутствии гетероскедастичности принимается.
Все права защищены и охраняются законом. Copyright © ООО Новый семестр 2006-2013 Эконометрика онлайн