Значимость коэффициента Кендела

Задание. По данным об объеме строительно-монтажных работ, выполненных собственными силами, и численности работающих в 10 строительных компаниях одного из городов РФ, определить зависимость между этими признаками с помощью коэффициента Кендела.
Решение находим с помощью калькулятора.
Присвоим ранги признаку Y и фактору X.
Расположим объекты так, чтобы их ранги по X представили натуральный ряд. Так как оценки, приписываемые каждой паре этого ряда, положительные, значения «+1», входящие в Р, будут порождаться только теми парами, ранги которых по Y образуют прямой порядок.
Их легко подсчитать, сопоставляя последовательно ранги каждого объекта в ряду Y с стальными.
Коэффициент Кендэла.
tau = {P - Q}/{{1}/{2}N(N-1)}
В общем случае расчет τ (точнее Р или Q) даже для N порядка 10 оказывается громоздким. Покажем, как упростить вычисления.
tau = 1 - {4Q}/{N(N-1)}
или
tau = {4P}/{N(N-1)} - 1
Решение.
Упорядочим данные по X.
В ряду Y справа от 2 расположено 8 рангов, превосходящих 2, следовательно, 2 породит в Р слагаемое 8.
Справа от 4 стоят 6 ранга, превосходящих 4 (это 7, 5, 6, 8, 9, 10), т.е. в Р войдет 6 и т.д. В итоге Р = 29 и с использованием формул имеем:

X Y ранг X, dx ранг Y, dy P Q
38 292 1 2 8 1
50 302 2 4 6 2
52 366 3 7 3 4
54 312 4 5 4 2
59 359 5 6 3 2
61 398 6 8 2 2
66 401 7 9 1 2
70 298 8 3 1 1
71 283 9 1 1 0
73 413 10 10 0 0
29 16


tau = {29 - 16}/{{1}/{2}10(10-1)} = 0.29
По упрощенным формулам:
tau = 1 - {4 mul 16}/{10(10-1)} = 0.29
tau = {4 mul 29}/{10(10-1)} - 1 = 0.29
Для того чтобы при уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента ранговой корреляции Кендалла при конкурирующей гипотезе Н1: τ ≠ 0,надо вычислить критическую точку:
T_{kp} = z_{kp} sqrt{{2(2n+5)}/{9n(n-1)}}
где n - объем выборки; zkp - критическая точка двусторонней критической области, которую находят по таблице функции Лапласа по равенству Ф(zkp)=(1 — α)/2.
Если |τ| < Tkp — нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качественными признаками незначима. Если |τ| > Tkp — нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.
Найдем критическую точку zkp
Ф(zkp) = (1 - α)/2 = (1 - 0.05)/2 = 0.475
По таблице Лапласа находим zkp = 1.96
Найдем критическую точку:
T_{kp} = 1.96 sqrt{{2(2 mul 10+5)}/{9 mul 10(10-1)}} = 0.49
Так как τ < Tkp — принимаем нулевую гипотезу; ранговая корреляционная связь между оценками по двум тестам незначимая
загрузка...