Пример нахождения коэффициента ранговой корреляции Спирмена

На практике для определения тесноты связи двух признаков часто применяется коэффициент ранговой корреляции Спирмена (Р). Значения каждого признака ранжируются по степени возрастания (от 1 до n), затем определяется разница (d) между рангами, соответствующими одному наблюдению.

Пример №1. Зависимость между объемом промышленной продукции и инвестициями в основной капитал по 10 областям одного из федеральных округов РФ в 2003 году характеризуется следующими данными.
Вычислите ранговые коэффициенты корреляции Спирмена и Кендэла. Проверить их значимость при α=0,05. Сформулируйте вывод о зависимости между объемом промышленной продукции и инвестициями в основной капитал по рассматриваемым областям РФ.

Присвоим ранги признаку Y и фактору X. Найдем сумму разности квадратов d2.
По формуле вычислим коэффициент ранговой корреляции Спирмена.

коэффициент ранговой корреляции Спирмена
X Y ранг X, dx ранг Y, dy (dx - dy)2
1.3 300 1 2 1
1.8 1335 2 12 100
2.4 250 3 1 4
3.4 946 4 8 16
4.8 670 5 7 4
5.1 400 6 4 4
6.3 380 7 3 16
7.5 450 8 5 9
7.8 500 9 6 9
17.5 1582 10 16 36
18.3 1216 11 9 4
22.5 1435 12 14 4
24.9 1445 13 15 4
25.8 1820 14 19 25
28.5 1246 15 10 25
33.4 1435 16 14 4
42.4 1800 17 18 1
45 1360 18 13 25
50.4 1256 19 11 64
54.8 1700 20 17 9
        364


Связь между признаком Y фактором X  сильная и прямая.

Оценка коэффициента ранговой корреляции Спирмена

Значимость коэффициента ранговой корреляции Спирмена
Значимость коэффициента ранговой корреляции Спирмена
По таблице Стьюдента находим Tтабл.
Tтабл = (18;0.05) = 1.734
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве нулю коэффициента ранговой корреляции. Другими словами, коэффициента ранговой корреляции Спирмена статистически - значим.

Интервальная оценка для коэффициента ранговой корреляции (доверительный интервал)


Доверительный интервал для коэффициента ранговой корреляции Спирмена: p(0.5431;0.9095).

Перейти к онлайн решению своего примера

Пример №2. Исходные данные.

5 4
3 4
1 3
3 1
6 6
2 2


Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 6). Переформирование рангов производится в табл.

Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 1 1
2 2 2
3 3 3.5
4 3 3.5
5 5 5
6 6 6


Так как в матрице имеются связанные ранги 2-го ряда, произведем их переформирование. Переформирование рангов производится в табл.

Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 1 1
2 2 2
3 3 3
4 4 4.5
5 4 4.5
6 6 6


Матрица рангов.

ранг X, dx ранг Y, dy (dx - dy)2
5 4.5 0.25
3.5 4.5 1
1 3 4
3.5 1 6.25
6 6 0
2 2 0
21 21 11.5


Поскольку среди значений признаков х и у встречается несколько одинаковых, т.е. образуются связанные ранги, то в таком случае коэффициент Спирмена вычисляется как:

где


j - номера связок по порядку для признака х;
Аj - число одинаковых рангов в j-й связке по х;
k - номера связок по порядку для признака у;
Вk - число одинаковых рангов в k-й связке по у.
A = [(23-2)]/12 = 0.5
B = [(23-2)]/12 = 0.5
D = A + B = 0.5 + 0.5 = 1

Связь между признаком Y и фактором X умеренная и прямая

см. также Коэффициент ранговой корреляции Спирмена. Примеры решений

загрузка...