Задача оптимального распределения инвестиций

Назначение сервиса. Данный сервис предназначен для решения задачи оптимального распределения инвестиций в онлайн режиме. Результаты вычислений оформляются в отчете формата Word (см. пример оформления).
Такого рода задачи основаны на функции Беллмана и при решении используется метод обратной прогонки (см. Типовые задания). Также можно воспользоваться сервисом Процедура прямой прогонки.
Инструкция. Выберите количество предприятий и количество строк (количество вариантов эффективного вложения), нажмите Далее (см. Пример заполнения). Если доход и остатки предприятий задан в виде функций f(x) и g(x), задача решается через этот калькулятор.
Количество предприятий
Количество строк (количество вариантов эффективного вложения)

Пример. Определите оптимальный план расширения производства трех предприятий, если известна их прибыль в год при отсутствии вложений и при инвестировании 1, 2, 3 или 4 млн. Определите, при каком инвестировании будет максимальный процент прироста прибыли.

f1 f2 f3 xi
40 30 35 0
90 110 95 1
395 385 270 2
440 470 630 3
620 740 700 4

I этап. Условная оптимизация.
1-ый шаг. k = 3.

e2 u3 e3 = e2 - u3 f3(u3) F*3(e3) u3(e3)
1 0 1 35
1 0 95 95 1
2 0 2 35
1 1 95
2 0 270 270 2
3 0 3 35
1 2 95
2 1 270
3 0 630 630 3
4 0 4 35
1 3 95
2 2 270
3 1 630
4 0 700 700 4


2-ый шаг. k = 2.

e1 u2 e2 = e1 - u2 f2(u2) F*2(e1) F1(u2,e1) F*2(e2) u2(e2)
1 0 1 30 95 125 125 0
1 0 110 0 110
2 0 2 30 270 300
1 1 110 95 205
2 0 385 0 385 385 2
3 0 3 30 630 660 660 0
1 2 110 270 380
2 1 385 95 480
3 0 470 0 470
4 0 4 30 700 730
1 3 110 630 740 740 1
2 2 385 270 655
3 1 470 95 565
4 0 740 0 740

3-ый шаг. k = 1.

e0 u1 e1 = e0 - u1 f1(u1) F*1(e0) F0(u1,e0) F*1(e1) u1(e1)
1 0 1 40 125 165 165 0
1 0 90 0 90
2 0 2 40 385 425 425 0
1 1 90 125 215
2 0 395 0 395
3 0 3 40 660 700 700 0
1 2 90 385 475
2 1 395 125 520
3 0 440 0 440
4 0 4 40 740 780 780 0
1 3 90 660 750
2 2 395 385 780
3 1 440 125 565
4 0 620 0 620

Примечание: Столбцы 1 (вложенные средства), 2 (проект) и 3 (остаток средств) для всех трех таблиц одинаковы, поэтому их можно было бы сделать общими. Столбец 4 заполняется на основе исходных данных о функциях дохода, значения в столбце 5 берутся из столбца 7 предыдущей таблицы, столбец 6 заполняется суммой значений столбцов 4 и 5 (в таблице 3-го шага столбцы 5 и 6 отсутствуют).
В столбце 7 записывается максимальное значение предыдущего столбца для фиксированного начального состояния, и в 8 столбце записывается управление из 2 столбца, на котором достигается максимум в 7.
Этап II. Безусловная оптимизация.
Из таблицы 3-го шага имеем F*1(e0 = 4 млн.руб.) = 780 тыс.руб., то есть максимальная прибыль от инвестирования e0 = 4 млн.руб. равна 780 тыс.руб.
Из этой же таблицы получаем, что первому предприятию следует выделить u*1(e0 = 4 млн.руб.) = 0 млн.руб.
При этом остаток средств составит: e1 = e0 - u1, e1 = 4 - 0 = 4 млн.руб.
Из таблицы 2-го шага имеем F*2(e1 = 4 млн.руб.) = 740 тыс.руб., т.е. максимальная прибыль при e1 = 4 млн.руб. равна 740 тыс.руб.
Из этой же таблицы получаем, что второму предприятию следует выделить u*2(e1 = 4 млн.руб.) = 1 млн.руб.
При этом остаток средств составит: e2 = e1 - u2, e2 = 4 - 1 = 3 млн.руб.
Последнему предприятию достается 3 млн.руб. Итак, инвестиции в размере 4 млн.руб. необходимо распределить следующим образом: первому предприятию ничего не выделять, второму предприятию выделить 1 млн.руб., третьему предприятию выделить 3 млн.руб., что обеспечит максимальную прибыль, равную 780 тыс.руб.
загрузка...