Игры с природой: критерии Максимакса, Байеса, Лапласа, Вальда, Сэвиджа и Гурвица
Матрица рисков
Седловая точка
Платежная матрица
Смешанные стратегии
Метод Брауна
Чистые стратегии
Цена игры
Динамическое программирование
Системы массового обслуживания

Теория игр. Решение матричной игры

ИгрокиB1B2B3B4a = min(Ai)
A120130
A242211
A313511
b = max(Bi)4353
Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(ai) = 1, которая указывает на максимальную чистую стратегию A2.
Верхняя цена игры b = min(bj) = 3.
Что свидетельствует об отсутствии седловой точки, так как a ≠ b, тогда цена игры находится в пределах 1 <= y <= 3. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии)

С позиции проигрышей игрока В стратегия B3 доминирует над стратегией B2 (все элементы столбца 3 больше элементов столбца 2), следовательно исключаем 3-ой столбец матрицы. Вероятность q3 = 0.

203
421
131

При исходных данных задача решается только с использованием минимакса или симплекс-метода.

загрузка...
12+ Все права защищены и охраняются законом. Copyright © ООО Новый семестр 2006-2016 Все права защищены и охраняются законом. Copyright © ООО Новый семестр 2006-2013 Теория игр онлайн