Базисные решения системы линейных уравнений методом Жордана-Гаусса

Назначение сервиса. С помощью данного онлайн-калькулятора находятся базисные решения системы линейных уравнений, определяется опорное решение. Полученное решение сохраняется в файле Word.
Инструкция. Для получения решения необходимо выбрать
количество переменных: и количество строк

При решении используется метод прямоугольника, в результате применения которого получается диагональная матрица — квадратная матрица, все элементы которой, стоящие вне главной диагонали, равны нулю.

Система линейных уравнений:
2x1 + x2 - x3 + 3x4 - 2x5 = 2
x1 - x2 + x4 = 0
x1 - x3 + x4 - 2x5 = -1
Запишем ее через матрицу.

21-13-2
1-1010
10-11-2
Векторы столбцы базисного решения представляют собой единичные векторы и образуют базис, а соответствующие им переменные называются базисными. Чтобы получить единичные векторы и используют метод Жордана-Гаусса (см. также правило прямоугольника). Опорным решением называется базисное неотрицательное решение.

Решение системы линейных уравнений называется базисным, если свободные переменные (m>n) обращаются в ноль.

Пример №1. Найти три базисных решения системы линейных уравнений методом Жордана-Гаусса, указать среди них опорные.
Решение. Запишем систему в виде:

2 1 -1 3 -2 2
1 -1 0 1 0 0
1 0 -1 1 -2 -1

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (2).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ - (А*В)/РЭ
РЭ - разрешающий элемент (2), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:
x1 x2 x3 x4 x5 B
2 / 2 = 1 1 / 2 = 0.5 -1 / 2 = -0.5 3 / 2 = 1.5 -2 / 2 = -1 2 / 2 = 1
1 0.5 -0.5 1.5 -1 1
0 -1.5 0.5 -0.5 1 -1
0 -0.5 -0.5 -0.5 -1 -2

Разрешающий элемент равен (-1.5).
Представим расчет каждого элемента в виде таблицы:
x1 x2 x3 x4 x5 B
0 / -1.5 = 0 -1.5 / -1.5 = 1 0.5 / -1.5 = -0.33 -0.5 / -1.5 = 0.33 1 / -1.5 = -0.67 -1 / -1.5 = 0.67

1 0 -0.33 1.33 -0.67 0.67
0 1 -0.33 0.33 -0.67 0.67
0 0 -0.67 -0.33 -1.33 -1.67

Разрешающий элемент равен (-0.67).
Теперь общее решение системы можно записать так:
x1 = 1.5 - 1.5x4
x2 = 1.5 - 0.5x4
x3 = 2.5 - 0.5x4 + 2x5
Необходимо переменные x4,x5 принять в качестве свободных переменных и через них выразить базисные.
Приравняем переменные x4 и x5 к 0. Получим базисное решение системы.
x1 = 1.5
x2 = 1.5
x3 = 2.5
Поскольку среди базисного решения нет отрицательных значений, то полученное решение является опорным.
Для получения частного решения, необходимо задать любые значения x4 и x5. Пусть x4=1 и x5=1.
x1 = 0
x2 = 1
x3 = 4

Пример №2. Используя метод Жордана-Гаусса, привести систему к единичному базису. Найти одно из: а) базисных решений, б) опорных решений системы.

загрузка...