Свойства дисперсии

Дисперсия представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины и вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):
Формула дисперсии,
Формула взвешенной дисперсии,

среднее квадратическое отклонение (σ):
(простое среднеквадратическое отклонение),
(взвешенное среднеквадратическое отклонение).
Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности. Оно выражается в тех же единицах, что и признак.

Расчет дисперсии может быть упрощен. В случае равных интервалов в вариационном ряду распределения используется способ отсчета от условного нуля (способ моментов). Для его понимания необходимо знать следующие свойства дисперсии:
Свойство 1. Дисперсия постоянной величины равна нулю.
Свойство 2. Уменьшение всех значений признака на одну и ту же величину A не меняет величины дисперсии . Значит, средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-либо постоянного числа.
Свойство 3. Уменьшение всех значений признака в K раз уменьшает дисперсию в K2 раз, а среднее квадратическое отклонение в K раз . Значит, все значения признака можно разделить на какое-то постоянное число, например, на величину интервала ряда, исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число: .
Свойство 4. Если вычислить средний квадрат отклонений от любой величины A, в той или иной степени отличающейся от средней арифметической (), то он всегда будет больше среднего квадрата отклонений, вычисленного от средней арифметической . Средний квадрат отклонений при этом будет больше на величину ( – A)2 :
.
Значит, дисперсия от средней величины всегда меньше дисперсий, вычисленных от любых других величин, т.е. она имеет свойство минимальности.
см. также свойства дисперсии для дискретной случайной величины

Рассмотрим расчет дисперсии и среднего квадратического отклонения по данным таблицы.
Таблица - Вычисление σ2 и σ по несгруппированным данным.

Хозяйство Валовой сбор, ц, x xi – xср (xi – xср)2
А 1 2 3
1 600 100 10 000
2 520 20 400
3 400 -100 10 000
4 600 100 10 000
5 500 0 0
6 380 -120 14 400
ИТОГО 3000 0 44 800

1) Определим среднюю величину по исходным данным (гр.1) по формуле средней арифметической простой:
.

2) Находим отклонения xi от и записываем их в гр. 2. Возводим отклонения во вторую степень, отводим для них гр. 3. Их сумма – 44 800.

3) Разделив ее на число единиц совокупности, получаем дисперсию:
.

4) Извлекая корень из второй степени получаем среднее квадратичное отклонение равное 86,4099.
Степень вариации в данной совокупности не велика, т.к. средняя величина равна 500 ц. Это говорит об однородности рассматриваемой нами совокупности.

Рассмотрим вычисление дисперсии и среднеквадратического отклонения по сгруппированным данным табл. 5.3.
Таблица 5.3 - Расчет σ2 и σ в двух вариационных рядах с разным распределением частот.

НПО “Платан” НПО “Исток”
тариф, разряд xi число работников, fi xi – xср (xi – xср)2 (xi – xср)2fi тариф, разряд xi число работников, fi xi – xср (xi – xср)2 (xi – xср)2 fi
12 1 -3 9 9 12 30 -3 9 270
13 5 -2 4 20 13 20 -2 4 80
14 30 -1 1 30 14 10 -1 1 10
15 60 0 0 0 15 50 0 0 0
16 30 1 1 30 16 10 1 1 10
17 5 2 4 20 17 20 2 4 80
18 1 3 9 9 18 30 3 9 270
Итого 132 118 170 720

. .

На математических свойствах дисперсии основываются способы, которые позволяют упростить ее вычисление. Например, расчет дисперсии по способу моментов или способу отсчета от условного нуля применяется в вариационных рядах с равными интервалами. Расчет производится по формуле:
,
где K – ширина интервала;
A – условный нуль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
– момент второго порядка.

Между средним линейным и средним квадратическим отклонениями существует примерное соотношение если фактическое распределение близко к нормальному.
В условиях нормального распределения существует следующая зависимость между величиной среднего квадратического отклонения и количеством наблюдений:
1) в пределах ± 1σ располагается 68,3 % количества наблюдений;
2) в пределах ± 2σ – 95,4 %;
3) в пределах ± 3σ – 99,7 %;
В действительности, на практике почти не встречаются отклонения, которые превышают ±3σ. Отклонение 3σ может считаться максимально возможным. Это положение называют «правилом трех сигм».

загрузка...