Проверка гипотезы о нормальном распределении

Критерий согласия Пирсона: критерий согласия Пирсона

Проверить гипотезу о нормальном распределении по критерию Пирсона. Уровень значимости α=0.05. Данные разбить на 6 интервалов.

Решение находим с помощью калькулятора. Ширина интервала составит:

Xmax - максимальное значение группировочного признака в совокупности.
Xmin - минимальное значение группировочного признака.
Определим границы группы.

Номер группы Нижняя граница Верхняя граница
1 43 45.83
2 45.83 48.66
3 48.66 51.49
4 51.49 54.32
5 54.32 57.15
6 57.15 60


Одно и тоже значение признака служит верхней и нижней границами двух смежных (предыдущей и последующей) групп.
Для каждого значения ряда подсчитаем, какое количество раз оно попадает в тот или иной интервал. Для этого сортируем ряд по возрастанию.

43 43 - 45.83 1
48.5 45.83 - 48.66 1
49 48.66 - 51.49 1
49 48.66 - 51.49 2
49.5 48.66 - 51.49 3
50 48.66 - 51.49 4
50 48.66 - 51.49 5
50.5 48.66 - 51.49 6
51.5 51.49 - 54.32 1
51.5 51.49 - 54.32 2
52 51.49 - 54.32 3
52 51.49 - 54.32 4
52 51.49 - 54.32 5
52 51.49 - 54.32 6
52 51.49 - 54.32 7
52 51.49 - 54.32 8
52 51.49 - 54.32 9
52.5 51.49 - 54.32 10
52.5 51.49 - 54.32 11
53 51.49 - 54.32 12
53 51.49 - 54.32 13
53 51.49 - 54.32 14
53.5 51.49 - 54.32 15
54 51.49 - 54.32 16
54 51.49 - 54.32 17
54 51.49 - 54.32 18
54.5 54.32 - 57.15 1
54.5 54.32 - 57.15 2
55.5 54.32 - 57.15 3
57 54.32 - 57.15 4
57.5 57.15 - 59.98 1
57.5 57.15 - 59.98 2
58 57.15 - 59.98 3
58 57.15 - 59.98 4
58.5 57.15 - 59.98 5
60 57.15 - 59.98 6


Результаты группировки оформим в виде таблицы:

Группы № совокупности Частота fi
43 - 45.83 1 1
45.83 - 48.66 2 1
48.66 - 51.49 3,4,5,6,7,8 6
51.49 - 54.32 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 18
54.32 - 57.15 27,28,29,30 4
57.15 - 59.98 31,32,33,34,35,36 6


Таблица для расчета показателей.

Группы xi Кол-во, fi xi * fi Накопленная частота, S |x - xср|*f (x - xср)2*f Частота, fi/n
43 - 45.83 44.42 1 44.42 1 8.88 78.91 0.0278
45.83 - 48.66 47.25 1 47.25 2 6.05 36.64 0.0278
48.66 - 51.49 50.08 6 300.45 8 19.34 62.33 0.17
51.49 - 54.32 52.91 18 952.29 26 7.07 2.78 0.5
54.32 - 57.15 55.74 4 222.94 30 9.75 23.75 0.11
57.15 - 59.98 58.57 6 351.39 36 31.6 166.44 0.17
36 1918.73 82.7 370.86 1


Для оценки ряда распределения найдем следующие показатели:
Показатели центра распределения.
Средняя взвешенная


Мода
Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x0 – начало модального интервала; h – величина интервала; f2 –частота, соответствующая модальному интервалу; f1 – предмодальная частота; f3 – послемодальная частота.
Выбираем в качестве начала интервала 51.49, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 52.8
Медиана
Медиана делит выборку на две части: половина вариант меньше медианы, половина — больше.
В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 51.49 - 54.32, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).


Таким образом, 50% единиц совокупности будут меньше по величине 53.06
Показатели вариации.
Абсолютные показатели вариации.
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 60 - 43 = 17
Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.


Каждое значение ряда отличается от другого не более, чем на 2.3
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 53.3 не более, чем на 3.21
Оценка среднеквадратического отклонения.

Относительные показатели вариации.
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.
Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v ≤ 30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.
Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Проверка гипотез о виде распределения.
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где pi — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону
Для вычисления вероятностей pi применим формулу и таблицу функции Лапласа

где
s = 3.21, xср = 53.3
Теоретическая (ожидаемая) частота равна ni = npi, где n = 36

Интервалы группировки Наблюдаемая частота ni x1 = (xi - xср)/s x2 = (xi+1 - xср)/s Ф(x1) Ф(x2) Вероятность попадания в i-й интервал, pi = Ф(x2) - Ф(x1) Ожидаемая частота, 36pi Слагаемые статистики Пирсона, Ki
43 - 45.83 1 -3.16 -2.29 -0.5 -0.49 0.01 0.36 1.14
45.83 - 48.66 1 -2.29 -1.42 -0.49 -0.42 0.0657 2.37 0.79
48.66 - 51.49 6 -1.42 -0.56 -0.42 -0.21 0.21 7.61 0.34
51.49 - 54.32 18 -0.56 0.31 -0.21 0.13 0.34 12.16 2.8
54.32 - 57.15 4 0.31 1.18 0.13 0.38 0.26 9.27 3
57.15 - 59.98 6 1.18 2.06 0.38 0.48 0.0973 3.5 1.78
36 9.84


Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения χ2 и заданным значениям s, k (число интервалов), r=2 (параметры xcp и s оценены по выборке).
Kkp = 7.81473; Kнабл = 9.84
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены не по нормальному закону.

Перейти к онлайн решению своей задачи Проверка гипотезы о нормальном распределении

загрузка...