Интервальное оценивание генеральной доли

Интервальное оценивание вероятности события. Формулы расчета численности выборки при собственно-случайном способе отбора.

Для определения вероятностей интересующих нас событий мы применяем выборочный метод: проводим n независимых экспериментов, в каждом из которых может произойти (или не произойти) событие А (вероятность р появления события А в каждом эксперименте постоянна). Тогда относительная частота p* появлений событий А в серии из n испытаний принимается в качестве точечной оценки для вероятности p появления события А в отдельном испытании. При этом величину p* называют выборочной долей появлений события А, а р— генеральнойдолей.

В силу следствия из центральной предельной теоремы (теорема Муавра-Лапласа) относительную частоту события при большом объеме выборки можно считать нормально распределенной с параметрами M(p*)=p и

Поэтому при n>30 доверительный интервал для генеральной доли можно построить, используя формулы:


где uкр находится по таблицам функции Лапласа с учетом заданной доверительной вероятности γ: 2Ф(uкр)=γ.

При малом объеме выборки n≤30 предельная ошибка ε определяется по таблице распределения Стьюдента:
где tкр=t(k; α) и число степеней свободы k=n-1 вероятность α=1-γ (двустороння область).

Формулы справедливы, если отбор проводился случайным повторным образом (генеральная совокупность бесконечна), в противном случае необходимо сделать поправку на бесповторность отбора (табл. 5.2).

Средняя ошибка выборки для генеральной доли

Генеральная совокупность Бесконечная Конечная объема N
Тип отбора Повторный Бесповторный
Средняя ошибка выборки
Доля единиц w = . Точность ε = . Вероятность γ =

Формулы расчета численности выборки при собственно-случайном способе отбора

Способ отбора Формулы определения численности выборки
для среднейдля доли
Повторный
Бесповторный

Пример №1. С помощью случайного повторного отбора руководство фирмы провело выборочный опрос 900 своих служащих. Среди опрошенных оказалось 270 женщин. Постройте доверительный интервал, с вероятностью 0.95 накрывающий истинную долю женщин во всем коллективе фирмы.
Решение. По условию выборочная доля женщин составляет (относительная частота женщин среди всех опрошенных). Так как отбор является повторным, и объем выборки велик (n=900) предельная ошибка выборки определяется по формуле

Значение uкр находим по таблице функции Лапласа из соотношения 2Ф(uкр)=γ, т.е. Функция Лапласа (приложение 1) принимает значение 0.475 при uкр=1.96. Следовательно, предельная ошибка и искомый доверительный интервал
(p – ε, p + ε) = (0.3 – 0.18; 0.3 + 0.18) = (0.12; 0.48)
Итак, с вероятностью 0.95 можно гарантировать, что доля женщин во всем коллективе фирмы находится в интервале от 0.12 до 0.48.

Пример №2. Владелец автостоянки считает день «удачным», если автостоянка заполнена более, чем на 80 %. В течение года было проведено 40 проверок автостоянки, из которых 24 оказались «удачными». С вероятностью 0.98 найдите доверительный интервал для оценки истинной доли «удачных» дней в течение года.
Решение. Выборочная доля «удачных» дней составляет
По таблице функции Лапласа найдем значение uкр при заданной
доверительной вероятности
Ф(2.23) = 0.49, uкр = 2.33.
Считая отбор бесповторным (т.е. две проверки в один день не проводилось), найдем предельную ошибку:
где n=40, N = 365 (дней). Отсюда
и доверительный интервал для генеральной доли: (p – ε, p + ε) = (0.6 – 0.17; 0.6 + 0.17) = (0.43; 0.77)
С вероятностью 0.98 можно ожидать, что доля «удачных» дней в течение года находится в интервале от 0.43 до 0.77.

Пример №3. Проверив 2500 изделий в партии, обнаружили, что 400 изделий высшего сорта, а n–m – нет. Сколько надо проверить изделий, чтобы с уверенностью 95% определить долю высшего сорта с точностью до 0.01?
Решение ищем по формуле определения численности выборки для повторного отбора.

Ф(t) = γ/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96
Выборочная доля w = 0.16; ошибка выборки ε = 0.01

загрузка...