Проверка гипотез о виде распределения

1. Нормальным или гауссовым распределением называется непрерывное распределение, плотность которого имеет вид

φ(x)– функция Гаусса (таблица),
Параметры a и σ имеют смысл математического ожидания и среднего квадратичного отклонения.

2. Справедливы формулы:

Ф(x)– интеграл вероятностей, таблица.
Обратим внимание, что Ф(-x)=–Ф(x), Ф(x)=0.5 при x>5.

3. Правило трех сигм: – т.е. вероятность отклонения нормально распределенной величины от математического ожидания более чем на 3σ практически равна нулю.
Главная особенность, выделяющая нормальный закон среди других законов распределения, состоит в том, что он является предельным, к которому приближаются другие законы при весьма часто встречающихся условиях.

Задание. Сгруппировать ряд, образовав группы с равными интервалами. Проверить ряд на нормальный закон распределения.
Решение находим с помощью калькулятора Проверка гипотезы о виде распределения. Число групп приближенно определяется по формуле Стэрджесса
n = 1 + 3,2log n = 1 + 3,2log 57 = 7
Тогда ширина интервала составит:

Группы x Кол-во f x * f S (x - x ср) * f (x - x ср)2 * f (x - x ср)3 * f (x - x ср)4 * f Частота
5.59 - 5.75 5.67 5 28.35 5 2.05 0.84 -0.34 0.14 0.09
5.75 - 5.91 5.83 14 81.62 19 3.5 0.87 -0.22 0.05 0.25
5.91 - 6.07 5.99 7 41.93 26 0.63 0.06 -0.01 0 0.12
6.07 - 6.23 6.15 15 92.25 41 1.05 0.07 0.01 0 0.26
6.23 - 6.39 6.31 9 56.79 50 2.07 0.48 0.11 0.03 0.16
6.39 - 6.55 6.47 5 32.35 55 1.95 0.76 0.3 0.12 0.09
6.55 - 6.71 6.63 2 13.26 57 1.1 0.61 0.33 0.18 0.04
    57 346.55 0 12.35 3.69 0.18 0.52 0

Для оценки ряда распределения найдем следующие показатели:
Показатели центра распределения.
Средняя взвешенная


Мода

Выбираем в качестве начала интервала 6.07, так как именно на этот интервал приходится наибольшее количество

Наиболее часто встречающееся значение ряда – 6.16
Медиана
Медиана делит выборку на две части: половина вариант меньше медианы, половина — больше


Таким образом, что 50% единиц совокупности будут меньше по величине 6.1
Квартили
Квартили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1; 25% будут заключены между Q1 и Q2; 25% - между Q2 и Q3; остальные 25% превосходят Q3


Таким образом, что 25% единиц совокупности будут меньше по величине 5.86
Q2 совпадает с медианой, Q2 = 6.1


Остальные 25% превосходят 6.26
Децили (децентили)
Децили – это значения признака в ранжированном ряду распределения, выбранные таким образом, что 10% единиц совокупности будут меньше по величине D1; 80% будут заключены между D1 и D9; остальные 10% превосходят D9


Таким образом, что 10% единиц совокупности будут меньше по величине 5.76


Остальные 10% превосходят 6.43
Показатели вариации.
Размах вариации
R = X max - X min
R = 6.65 - 5.59 = 1.06
Среднее линейное отклонение


Каждое значение ряда отличается от другого не более, чем на 0.22
Дисперсия


Среднее квадратическое отклонение

Каждое значение ряда отличается от среднего значения 6.08 не более, чем на 0.25
Коэффициент вариации

Поскольку v<30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять
Показатели формы распределения.
Коэффициент осцилляции

Относительное линейное отклонение

Относительный показатель квартильной вариации

Степень асимметрии
Симметричным является распределение, в котором частоты любых двух вариантов, равностоящих в обе стороны от центра распределения, равны между собой


Положительная величина указывает на наличие правосторонней асимметрии
Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.

Ex > 0  - островершинное распределение
Интервальное оценивание центра генеральной совокупности
Доверительный интервал для генерального среднего


Поскольку n>30, то определяем значение tkp по таблицам функции Лапласа
В этом случае 2Ф(tkp) = 1 - γ
Ф(tkp) = γ/2 = (1- 0.05)/2 = 0.475
По таблице функции Лапласа найдем, при каком tkp значение Ф(tkp) = 57
tkp (n-1;a) = (57;0.475) = 5

(6.08 - 0.48;6.08 + 0.48) = (5.6;6.56)
Проверка гипотез о виде распределения
Проверим это предположение с помощью критерия согласия Пирсона

где pi  — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону
Для вычисления вероятностей pi применим формулу и таблицу функции Лапласа

Интервалы группировки Наблюдаемая частота ni Ф(xi) Ф(xi+1) pi n pi Слагаемые статистики Пирсона Ki
5.59 - 5.75 5 0.4032 0.4732 0.07 3.99 0.2556
5.75 - 5.91 14 0.2486 0.4032 0.1546 8.8122 3.0540
5.91 - 6.07 7 0.016 0.2486 0.2326 13.2582 2.9540
6.07 - 6.23 15 0.2224 0.016 0.2064 11.7648 0.8896
6.23 - 6.39 9 0.3883 0.2224 0.1659 9.4563 0.0220
6.39 - 6.55 5 0.4678 0.3883 0.0795 4.5315 0.0484
6.55 - 6.71 2 0.4934 0.4678 0.0256 1.4592 0.2004
  57         7.424

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение  Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;a) находим по таблицам распределения «хи-квадрат» и заданным значениям a, k (число интервалов),  r=2 (параметры x и σ оценены по выборке).
Kkp = 9.5; Kнабл = 7.42
Наблюдаемое значение статистики Пирсона не попадает в критическую область: Кнабл < Kkp, поэтому нет оснований отвергать основную гипотезу. Справедливо предположение о том, что данные выборки имеют нормальное распределение.

Перейти к онлайн решению своей задачи

Пример. Длина переднего рога у африканского белого носорога описывается случайной величиной X, распределенной по нормальному закону с параметрами a=1,8 и σ2=1. Найти математическое ожидание M(5X-0,8).

загрузка...