Виды дисперсий

Наряду с изучением вариации признака по всей по всей совокупности в целом часто бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии.
Выделяют дисперсию общую, межгрупповую и внутригрупповую.
Общая дисперсия σ2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию, .

Межгрупповая дисперсия (δ) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:
.

Внутригрупповая дисперсия (σ) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она вычисляется по формуле:
.

Средняя из внутригрупповых дисперсий: .

Существует закон, связывающий 3 вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсии: .
Данное соотношение называют правилом сложения дисперсий.

В анализе широко используется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии. Он носит название эмпирического коэффициента детерминации (η2): .
Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения (η):
.
Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1.
Покажем его практическое использование на следующем примере (табл. 1).

Пример №1. Таблица 1 - Производительность труда двух групп рабочих одного из цехов НПО «Циклон»

Производительность труда рабочих
прошедших техническое обучение
(деталей за смену)
не прошедших техническое обучение (деталей за смену)
84 93 95 101 102 62 68 82 88 105
Рассчитаем общую и групповые средние и дисперсии:




Исходные данные для вычисления средней из внутригрупповых и межгрупповой дисперсии представлены в табл. 2.
Таблица 2
Расчет и δ2 по двум группам рабочих.


Группы рабочих
Численность рабочих, чел. Средняя, дет./смен. Дисперсия

Прошедшие техническое обучение

5 95 42,0

Не прошедшие техническое обучение

5 81 231,2

Все рабочие

10 88 185,6
Рассчитаем показатели. Средняя из внутригрупповых дисперсий:
.
Межгрупповая дисперсия

Общая дисперсия:
Таким образом, эмпирическое корреляционное соотношение: .

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков. Такое изучение вариации достигается посредством вычисления следующих видов дисперсий:

Внутригрупповая дисперсия доли определяется по формуле

. (1)

Средняя из внутригрупповых дисперсий рассчитывается так:
. (2)

Формула межгрупповой дисперсии имеет вид:
, (3)
где ni – численность единиц в отдельных группах.
Доля изучаемого признака во всей совокупности, которая определяется по формуле :
. (4)

Общая дисперсия определяется по формуле
. (5)

Три вида дисперсии связаны между собой следующим образом:
.

Это соотношение дисперсий называется теоремой сложения дисперсий доли признака.

Пример №2. Имеются следующие данные об удельном весе основных рабочих в трех цехах фирмы (табл. 2).
Таблица 2 - Удельный вес основных рабочих фирмы

Цех Удельный вес основных рабочих, в %, pi Численность всех рабочих, человек, ni
1 80 100
2 75 200
3 90 150
Итого 450

1) Определим долю основных рабочих в целом по фирме:
.
2) Общая дисперсия доли основных рабочих по всей фирме в целом будет равна .
3) Внутрицеховые дисперсии рассчитаем, применив формулу (5.1): ; ; .
4) Средняя из внутригрупповых дисперсий будет равна (формула 5.2):
5) Межгрупповую дисперсию определим по формуле (5.3): .

Проверка вычислений показывает: 0,154 = 0,15 + 0,004.

загрузка...