Деление столбиком онлайн
Корни уравнения
Решение интегралов
Вычислить производную
Вычислить предел
Ряд Тейлора
Дискриминант
Метод матриц
Обратная матрица
Умножение матриц
Новое на сайте
Задачи параметрического программирования
Критерий Манна-Уитни
Интервалы возрастания и убывания функции
Коэффициент контингенции
Коэффициент конкордации
Смешанное произведение векторов
Метод Фибоначчи

Прямая на плоскости

Построить треугольник, вершины которого находятся в точках A, B, C. По координатам вершин треугольника найти:
  1. координаты точки пересечения медиан;
  2. длину и уравнение высоты, опущенной из вершины А;
  3. площадь треугольника;
  4. систему неравенств, задающих внутренность треугольника АВС.

Инструкция. Для решения подобных задач в онлайн режиме заполните координаты вершин, нажмите Далее. Полученное решение сохраняется в файле Word. см. примеры решений.

Координаты вершин Использовать обозначение A, B, C
A: x y
B: x y
C: x y

Найти
1. Угол через свойство векторов как угол между прямыми
2. Координаты точки М, делящий в отношении: :
(при 1:1 означает деление отрезка пополам ?)
3. Проекция стороны на сторону
4. Уравнение медианы из вершины и ее длину
5. Уравнение высоты из вершины и ее длину
7. Уравнение биссектрисы из вершины , используя: свойства векторов свойства углов
8. Уравнение прямой, перпендикулярной прямой , проходящей через точку K ( : )
9. Уравнение прямой, параллельной прямой , проходящей через точку K ( : )

Выводить в отчет:
Векторы сторон треугольника в системе орт
Площадь треугольника ABC
Уравнение прямой AB
Уравнение прямой AC
Уравнение прямой BC
Координаты точки пересечения медиан (координаты центра тяжести треугольника)
Координаты точки пересечения высот

=

Пример. В задачах даны координаты точек A,B,C. Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC.
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi
здесь X,Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj
Например, для вектора AB
X = x2 - x1; Y = y2 - y1
X = 12-7 = 5; Y = -1-(-4) = 3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми. Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.88) = 28.070
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:

Уравнение прямой AB. Каноническое уравнение прямой:
или или y = 3/5x -41/5 или 5y -3x +41 = 0

Все права защищены и охраняются законом. Copyright © ООО Новый семестр 2006-2013 Решение задач по алгебре онлайн