Алгебраическая форма записи комплексного числа

Алгебраическая форма записи комплексного числа выглядит так: z = x + i*y, где x - действительная часть комплексного числа, y - мнимая часть.

Назначение. Онлайн калькулятор предназначен для представления комплексного числа в алгебраической форме. Результаты вычисления оформляются в формате Word.

z =

Пример №1. Дано комплексное число z. Требуется: 1) записать число z в алгебраической и тригонометрической формах; 2) найти все корни уравнения w3 + z = 0.
Решение находим с помощью калькулятора. z = 2sqrt(2)/(1+i). Преобразуем число в алгебраическую и тригонометрическую форму с помощью данного сервиса. После преобразований получим:
Алгебраическая форма записи:
z = 2sqrt(2)/(1+i) = 2sqrt(2)(1-i)/((1+i)(1-i)) = 2sqrt(2)(1-i)/2 = sqrt(2) - i*sqrt(2)
Находим тригонометрическую форму комплексного числа z = 2*sqrt(2)/(1+I)
,
Поскольку x > 0, y < 0, то arg(z) находим как:


Таким образом, тригонометрическая форма комплексного числа z = 2*sqrt(2)/(1+I)

Получаем уравнение w3 + z = 0 или w = (-z)1/3 = (-sqrt(2) + i*sqrt(2))1/3.
Далее решаем с помощью этого сервиса. Находим тригонометрическую форму комплексного числа z = -sqrt(2)+I*sqrt(2)
,

Поскольку x < 0, y >= 0, то arg(z) находим как:


Таким образом, тригонометрическая форма комплексного числа z = -sqrt(2)+I*sqrt(2)

Извлекаем

k = 0


или

k = 1


или

k = 2


или

Пример №2. Дано комплексное число a. Требуется: 1) записать число a в алгебраической и тригонометрической формах; 2) найти все корни уравнения z3 + a = 0.

Перейти к онлайн решению своей задачи

Пример №3. Число записать в алгебраической форме.
Решение. так как i82 = i4*20+2 = -1, i37 = i4*9+1 = i, i44 = i4*11=1, i51=i4*12+3 = -i, то
, поэтому

Пример №4. Записать число в алгебраической форме
Решение.
Модуль числа |z|=3, аргумент argz = 5/3π

, x > 0 , y < 0

, откуда

Имеем

Подставим y в первое уравнение

Поскольку x > 0 , y < 0, то

Пример №5. Записать число в алгебраической форме
Решение.
Модуль числа |z|= , аргумент argz = 5/4π

, x < 0 , y < 0

, откуда

Имеем

y=x
Подставим y в первое уравнение

x=1, y = 1
Поскольку x < 0 , y < 0, то z=-1-i

загрузка...