Центр тяжести однородной плоской фигуры

Пусть областью D плоскости xOy является материальная пластинка, масса которой распределяется с поверхностной плотностью p=f(x,y). Тогда масса M этой пластинки вычисляется по формуле
(1)
Координаты точки C(xc,yc), являющейся центром тяжести этой пластинки, определяются по формулам
, . (2)
Если поверхностная плотность p постоянна (пластинка однородна), то из формулы (2) следует:
, , (3)
где S – площадь области D.

Пример. Найти координаты центра тяжести однородной плоской фигуры, ограниченной параболой y=x2-2x-1 и прямой y=x-1 (рис.).
Решение

Вычислим площадь S данной фигуры с помощью двойного интеграла: .
Парабола и прямая пересекаются в точках A(0,-1) и B(3,2). Область D определяется неравенствами 0≤x≤3, x2-2x-1≤y≤x-1.
Тогда

Вычислим статистические моменты Mx и My пластинки относительно осей Ox и Oy:


Следовательно, , и точка
- центр тяжести данной фигуры.

загрузка...