Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть Ax + B

Пример 1. y'' - y' - 6 = 2x
Решение уравнения будем искать в виде y = erx через сервис линейные дифференциальные уравнения. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r2 - r - 6 = 0
D = (-1)2 - 4 • 1 • (-6) = 25


Корни характеристического уравнения:
r1 = 3
r2 = -2
Следовательно, фундаментальную систему решений составляют функции:
y1 = e3x
y2 = e-2x
Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:
f(x) = 2x
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы
имеет частное решение
y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))
где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 2x, Q(x) = 0, α = 0, β = 0.
Следовательно, число α + βi = 0 + 0i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y* = Ax + B
Вычисляем производные:
y' = A
y'' = 0
которые подставляем в исходное дифференциальное уравнение:
y'' -y' -6y = -A -6(Ax + B) = 2x
или
-6Ax-A-6B = 2x
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
-6A = 2
-1A -6B = 0
Из первой строки выражаем А = 2/(-6) = -1/3, которое подставляем во вторую строку: 1/3 = 6B
A = -1/3;B = 1/18;
Частное решение имеет вид:
y* = -1/3x + 1/18
Таким образом, общее решение дифференциального уравнения имеет вид:

Решение было получено и оформлено с помощью сервиса:
Дифференциальные уравнения

Пример 2. y’’ -2y’ + y = x-1
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r2 -2 r + 1 = 0
D = (-2)2 - 4 • 1 • 1 = 0


Корни характеристического уравнения:
Корень характеристического уравнения r1 = 1 кратности 2.
Следовательно, фундаментальную систему решений составляют функции:
y1 = ex
y2 = xex
Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:
f(x) = x-1
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы
имеет частное решение
y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))
где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = x-1, Q(x) = 0, α = 0, β = 0.
Следовательно, число α + βi = 0 + 0i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y* = Ax + B
Вычисляем производные:
y' = A
y'' = 0
которые подставляем в исходное дифференциальное уравнение:
y'' -2y' + y = -2A + (Ax + B) = x-1
или
A•x-2A+B = x-1
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
A = 1
-2A + B = -1
Откуда: A = 1;B = 1;
Частное решение имеет вид:
y* = x + 1
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 3. y’’ +6y’ + 9y = 9x2+12x-43

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.
Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r2 +6 r + 9 = 0
D = 62 - 4 • 1 • 9 = 0


Корни характеристического уравнения:
Корень характеристического уравнения r1 = -3 кратности 2.
Следовательно, фундаментальную систему решений составляют функции:
y1 = e-3x
y2 = xe-3x
Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть:
f(x) = 9•x2+12•x-43
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы
имеет частное решение
y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))
где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 9•x2+12•x-43, Q(x) = 0, α = 0, β = 0.
Следовательно, число α + βi = 0 + 0i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y* = Ax2 + Bx + C
Вычисляем производные:
y' = 2•A•x+B
y'' = 2•A
которые подставляем в исходное дифференциальное уравнение:
y'' + 6y' + 9y = 2•A + 6(2•A•x+B) + 9(Ax2 + Bx + C) = 9•x2+12•x-43
или
9•A•x2+12•A•x+2•A+9•B•x+6•B+9•C = 9•x2+12•x-43
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
9A = 9
12A + 9B = 12
2A + 6B + 9C = -43
Решая ее методом Гаусса, находим:
A = 1;B = 0;C = -5;
Частное решение имеет вид:
y* = x2 -5
Таким образом, общее решение дифференциального уравнения имеет вид:
y = C1 e-3x + C2 xe-3x + x2 -5

Перейти к онлайн решению своей задачи

см. также:

  1. Сборник решений линейных дифференциальных уравнений с постоянными коэффициентами
  2. Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть cos(x),sin(x)
  3. Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть ex*(Ax + B)
  4. Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть exp(x),cos(x),sin(x)
  5. Линейные дифференциальные уравнения с постоянными коэффициентами. Специальная часть Ax + B
загрузка...