Пример решения по схеме Бернулли

Задача 4. Среди 11 изделий 7 изделия первого сорта. Наудачу выбрали четыре изделия. случайная величина X – число первосортных изделий среди выбранных четырех изделий.
1. Составить закон распределения случайной величины X.
2. Построить полигон относительных частот.
3. Найти функцию распределения F(x) случайной величины X, построить ее график.
4. Найти характеристики случайной величины X:
а) математическое ожидание M(X);
б) дисперсию D(X), среднее квадратическое отклонение σ(Х);
в) моду M0.

Решение находим с помощью калькулятора.
Случайная величина X имеет область значений (0,1,2,...,n). Вероятности этих значений можно найти по формуле:
Pn(m) = Cmnpmqn-m
где Cmn - число сочетаний из n по m.

Найдем ряд распределения X.
P4(0) = (1-p)n = (1-0.636)4 = 0.0176
P4(1) = np(1-p)n-1 = 4(1-0.636)4-1 = 0.12


P4(4) = pn = 0.6364 = 0.16

xi

0

1

2

3

4

pi

0,0176

0,12

0,32

0,37

0,16


Полигон относительных частот

Мода равна тому значению X, при котором вероятность максимальная. В данном примере максимальная вероятность p =0,37 соответствует X = 3.

Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.0176 + 1*0.12 + 2*0.32 + 3*0.37 + 4*0.16 = 2.54
Дисперсию находим по формуле d = ∑x2ipi - M[x]2.

Дисперсия D[X].
D[X] = 02*0.0176 + 12*0.12 + 22*0.32 + 32*0.37 + 42*0.16 - 2.542 = 0.92601646

Среднее квадратическое отклонение σ(x).

Функция распределения F(X).
F(x≤0) = 0
F(0< x ≤1) = 0.01755518
F(1< x ≤2) = 0.12269340 + 0.01755518 = 0.14024858
F(2< x ≤3) = 0.32156460 + 0.14024858 = 0.46181318
F(3< x ≤4) = 0.37456972 + 0.46181318 = 0.8363829
F(x>4) = 1

Вариант 8. Вероятность того, что трамвай подойдет к остановке строго по расписанию, равна 0,7. X - число трамваев, прибывших по расписанию из 4 исследуемых. Составить закон распределения дискретной случайной величины X, вычислить M(X), D(X), σ(X), построить многоугольник распределения и график функции распределения F(X).
Решение. Случайная величина X имеет область значений (0,1,2,...,n). Вероятности этих значений можно найти по формуле:
Pn(m) = Cmnpmqn-m
где Cmn - число сочетаний из n по m.

Найдем ряд распределения X.
P4(0) = (1-p)n = (1-0.7)4 = 0.0081
P4(1) = np(1-p)n-1 = 4(1-0.7)4-1 = 0.0756


P4(4) = pn = 0.74 = 0.2401

x 0 1 2 3 4
p 0.0081 0.0756 0.2646 0.4116 0.2401

Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.0081 + 1*0.0756 + 2*0.2646 + 3*0.4116 + 4*0.2401 = 2.8
Дисперсию находим по формуле d = ∑x2ipi - M[x]2.
Дисперсия D[X].
D[X] = 02*0.0081 + 12*0.0756 + 22*0.2646 + 32*0.4116 + 42*0.2401 - 2.82 = 0.84
Среднее квадратическое отклонение σ(x).
загрузка...