Системы случайных величин

Упорядоченная пара (X,Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y. Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины. Дискретная двумерная случайная величина (X,Y) считается заданной, если известен ее закон распределения:
P(X=xi, Y=yj) = pij, i=1,2...,n, j=1,2...,m

Назначение сервиса. С помощью сервиса по заданному закону распределения можно найти:

  • ряды распределения X и Y, математическое ожидание M[X], M[Y], дисперсию D[X], D[Y];
  • ковариацию cov(x,y), коэффициент корреляции rx,y, условный ряд распределения X, условное математическое ожидание M[X/Y=yi];
см. пример решения. Кроме этого, дается ответ на вопрос, "зависимы ли случайные величины X и Y?".
Инструкция. Укажите размерность матрицы распределения вероятностей (количество строк и столбцов) и ее вид. Полученное решение сохраняется в файле Word.
Размерность матрицы распределения вероятностей x
Y по вертикали, X - по горизонтали
Y/Xx1x2xp
y1p1p2pn
ymp1mp2mpnm
Y по горизонтали, X - по вертикали
X/Yy1y2yp
x1p1p2pn
xmp1mp2mpnm

Пример №1. Двумерная дискретная случайная величина имеет таблицу распределения:

Y/X 1 2 3 4
10 0 0,11 0,12 0,03
20 0 0,13 0,09 0,02
30 0,02 0,11 0,08 0,01
40 0,03 0,11 0,05 q
Найти величину q и коэффициент корреляции этой случайной величины.

Решение. Величину q найдем из условия Σpij = 1
Σpij = 0,02 + 0,03 + 0,11 + … + 0,03 + 0,02 + 0,01 + q = 1
0.91+q = 1. Откуда q = 0.09
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X 10 20 30 40
P 0.26 0.24 0.22 0.28 ∑Pi = 1
Математическое ожидание M[X] = 10*0.26 + 20*0.24 + 30*0.22 + 40*0.28 = 25.2
Дисперсия D[X] = 102*0.26 + 202*0.24 + 302*0.22 + 402*0.28 - 25.22 = 132.96
Среднее квадратическое отклонение σ(x) = sqrt(D[X]) = sqrt(132.96) = 11.531

Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y 1 2 3 4
P 0.05 0.46 0.34 0.15 ∑Pi = 1
Математическое ожидание M[Y].
M[y] = 1*0.05 + 2*0.46 + 3*0.34 + 4*0.15 = 2.59
Дисперсия D[Y] = 12*0.05 + 22*0.46 + 32*0.34 + 42*0.15 - 2.592 = 0.64
Среднее квадратическое отклонение σ(y) = sqrt(D[Y]) = sqrt(0.64) = 0.801

Ковариация cov(X,Y) = M[X•Y] - M[X]•M[Y] = 2•10•0.11 + 3•10•0.12 + 4•10•0.03 + 2•20•0.13 + 3•20•0.09 + 4•20•0.02 + 1•30•0.02 + 2•30•0.11 + 3•30•0.08 + 4•30•0.01 + 1•40•0.03 + 2•40•0.11 + 3•40•0.05 + 4•40•0.09 - 25.2 • 2.59 = -0.068
Коэффициент корреляции rxy = cov(x,y)/σ(x)&sigma(y) = -0.068/(11.531*0.801) = -0.00736

загрузка...