Математический анализ

Задача 11. Найти пределы функций с помощью правила Лопиталя.
Пределы
а)
Решение.
Правило Лопиталя позволяет раскрывать неопределенность 0/0 и ∞ / ∞.
Для нашего примера:

Применим правило Лопиталя, которое гласит, что предел отношения функций равен пределу отношения их производных.

Для нашего примера: f(x) = 1-(cos(x))2, g(x) = x+sin(2•x)
Находим первую производную: f'(x) = 2•cos(x)•sin(x), g'(x) = 1+2•cos(2•x)

б)
Решение.
Для нашего примера:

Применим правило Лопиталя, которое гласит, что предел отношения функций равен пределу отношения их производных.

Для нашего примера:
f(x) = ln(sin(x))
g(x) = (2•x-π)2
Находим первую производную
f'(x) = cos(x)/sin(x)
g'(x) = -4•π+8•x

Находим вторую производную
f''(x) = -1-cos2(x)/sin2(x)
g''(x) = 8

в)
г) .

Задача 12. Провести полное исследование и построить графики функций.
Функции
а);
Решение ищем по схеме:

  1. выяснение области определения функции;
  2. определение четности или нечетности функции;
  3. исследуется периодичность функции;
  4. расчет точек пересечения кривой с осями координат;
  5. находят точки разрыва функции и определяют их характер;
  6. исследования на экстремум;
    Находим первую производную функции:

    или

    Приравниваем ее к нулю:

    x1 = -1
    x2 = 1
    Вычисляем значения функции
    f(-1) = -1/2
    f(1) = 1/2
    Ответ:
    fmin = -1/2, fmax = 1/2
    Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:

    или

    Вычисляем:
    y''(-1) = 1/2>0 - значит точка x = -1 точка минимума функции.
    y''(1) = -1/2<0 - значит точка x = 1 точка максимума функции.
  7. поиск точек перегиба и интервалы выпуклости и вогнутости кривой;
  8. расчет асимптот кривой;
    Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:

    Находим коэффициент k:


    Находим коэффициент b:


    Получаем уравнение горизонтальной асимптоты: y = 0
  9. строят график исследуемой функции.


б).

Задача 13. Дано скалярное поле.
1) Составить уравнение линии u = C и построить её график.
2) Вычислить с помощью градиента производную скалярного поля u=u(x;y) в точке A по направлению вектора .
3) Найти наибольшую скорость изменения скалярного поля в точке A.

С Координаты т. А Координаты т. В
4

Задача 18. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Сделать чертеж.
Уравнения линий
y = -4x3; x=0; y=4

загрузка...