Испытания по схеме Бернулли

Производится n опытов по схеме Бернулли с вероятностью успеха p. Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: Формула Бернулли, где Cmn - число сочетаний из n по m. число сочетаний из n по m
Ряд распределения имеет вид:
x01...mn
p(1-p)nnp(1-p)n-1...Cmnpm(1-p)n-mpn
Этот закон распределения называется биноминальным.

Назначение сервиса. Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np < 10) используется формула Пуассона.
Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1. Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x).
Решение. Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P3(0) = (1-p)n = (1-0.3)3 = 0.34
P3(1) = np(1-p)n-1 = 3(1-0.3)3-1 = 0.44
P_{3}(2) = {3!}/{2!(3-2)!}0.3^{2}(1-0.3)^{3-2} = 0.19
P3(3) = pn = 0.33 = 0.027

xi 0 1 2 3
pi 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x2ipi - M[x]2.
Дисперсия D[X].
D[X] = 02*0.34 + 12*0.44 + 22*0.19 + 32*0.027 - 0.92 = 0.63
Среднее квадратическое отклонение σ(x).
sigma(x) = sqrt{D[X]} = sqrt{0.63} = 0.79
Функция распределения F(X).
F(x<=0) = 0
F(0< x <=1) = 0.343
F(1< x <=2) = 0.441 + 0.343 = 0.784
F(2< x <=3) = 0.18900 + 0.784 = 0.973
F(x>3) = 1

Другие примеры.

  1. Вероятность появления события в одном испытании равна 0.6. Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8.
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2. Вероятность появления события в отдельном испытании равна 0.6. Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1, больше 0.97. (Ответ: 801)

Пример №3. Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение. Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4. Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2). Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание. Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5. Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99. Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

загрузка...