Метод хорд

Назначение сервиса. Сервис предназначен для нахождения корней уравнений f(x) в онлайн режиме методом хорд.
Инструкция. Введите выражение F(x), нажмите Далее. Полученное решение сохраняется в файле Word. Также создается шаблон решения в Excel. Ниже представлена видеоинструкция.
F(x) =
Искать в интервале от до . Точность ξ =
Количество интервалов разбиения, n =
Метод решения нелинейных уравнений
Примеры правильного написания F(x):
  1. 10•x•e2x = 10*x*exp(2*x)
  2. x•e-x+cos(3x) = x*exp(-x)+cos(3*x)
  3. x3-x2+3 = x^3-x^2+3
Некоторые выражения перед вычислениями необходимо преобразовать. Например, x=91/3 записать как x3-9.
Рассмотрим более быстрый способ нахождения корня на интервале [a,b], в предположении, что f(a)f(b)<0.
f’’(x)>0 f’’(x)<0
f(b)f’’(b)>0 f(a)f’’(a)>0
Рис.1а Рис. 1б

Рассмотрим рис.1а. Проведем через точки А и В хорду. Уравнение хорды
.
В точке x=x1, y=0, в результате получим первое приближение корня
. (3.8)
Проверяем условия
(а) f(x1)f(b)<0,
(б) f(x1)f(a)<0.
Если выполняется условие (а), то в формуле (3.8) точку a заменяем на x1, получим

.

Продолжая этот процесс, получим для n-го приближения
. (3.9)
Здесь подвижен конец a, то есть f(xi)f(b)<0. Аналогичная ситуация на рис 2а.
Рассмотрим случай, когда неподвижен конец .

f’’(x)<0 f’’(x)>0
f(b)f’’(b)<0 f(a)f’’(a)<0

Рис.2а Рис.2б

На рис 1б,2б выполняется f(xi)f(a)<0. Записав уравнение хорды, мы на первом шаге итерационного процесса получим x1 (см. (3.8)). Здесь выполняется f(x1)f(a)<0. Затем вводим b1=x1 (в формуле (3.8) точку b заменяем на x1), получим
.

Продолжая процесс, придем к формуле
. (3.10)
Останов процесса

|xn – xn-1|<ε; ξ≈xn

Рис. 3
На рис.3 f’’(x) меняет знак, поэтому подвижными будут оба конца.
Прежде чем перейти к вопросу о сходимости итерационного процесса метода хорд введем понятие выпуклой функции.

Определение. Непрерывная на [a,b] функция называется выпуклой (вогнутой), если для любых двух точек x1,x2, удовлетворяющих a≤x1<x2≤b и aÎ[0,1] выполняется соотношение
f(αx1 + (1-α)x2) ≤ αf(x1) + (1-α)f(x2) - выпуклая.
f(αx1 + (1-α)x2) ≥ αf(x1) + (1-α)f(x2) - вогнутая
Для выпуклой функции f’’(x)≥0.
Для вогнутой функции f’’(x)≤0

Теорема 3. Если функция f(x) выпукла (вогнута) на отрезке [a,b], то на любом отрезке  график функции f(x) лежит не выше (не ниже) хорды, проходящей через точки графика с абсциссами x1 и x2.

Доказательство:

Рассмотрим выпуклую функцию. Уравнение хорды: проходящей через x1 и x2 имеет вид:
.
Рассмотрим точку c= αx1 + (1-α)x2, где aÎ[0,1]

С другой стороны, по определению выпуклой функции имеем f(αx1 + (1-α)x2) ≤ αf1 + (1-α)f2; поэтому f(c) ≤ g(c) ч.т.д.

Для вогнутой функции доказательство аналогично.
Доказательство сходимости итерационного процесса рассмотрим для случая выпуклой (вогнутой) функции.

Теорема 4. Пусть задана непрерывная: дважды дифференцируемая функция f(x) на [a,b] и пусть f(a)f(b)<0, а f’(x) и f’’(x) сохраняют свои знаки на [a,b] (см. рис 1а,1б и рис 2а,2б). Тогда итерационный процесс метода хорд сходится к корню ξ с любой наперед заданной точностью ε.
Доказательство: Рассмотрим для примера случай f(a)f’’(a)<0 (см рис 1а и 2а). Из формулы (9) следует, что xn > xn-1 так как (b-xn-1)>0, а fn-1/(fb-fn-1)<0. Это справедливо для любого n, то есть получаем возрастающую последовательность чисел
a≤x0<x1<x2<…<xn≤ b
Докажем теперь, что все приближения xn < ξ, где ξ - корень. Пусть xn-1 < ξ. Покажем, что xn тоже меньше ξ. Введем
. (3.11)
Имеем
(3.12)
(то есть значение функции y(x) в точке xn на хорде [xn-1; b] совпадает с f(ξ)).
Так как  , то из (3.12) следует
или
. (3.13)
Для рис. 1а  , следовательно
 или
 значит  что и т.д. (см. (3.11)).
Для рис 2а . Следовательно, из (3.12) получим
 значит
 так как   ч.т.д.
Аналогичное доказательство для рис.1б и рис.2б. Таким образом, мы доказали, что последовательность чисел  является сходящейся.
a≤x0<x1<x2<…<xn≤ξ≤ b (рис.1а,2а).
a≤ ξ<xn< … <x1<x0≤ x0≤ b (рис.1б,2б).
Это значит, что для любого ε можно указать такое n, что будет выполняться |xn - ξ |<ε. Теорема доказана.
Сходимость метода хорд линейная с коэффициентом .
, (3.14)
где m1=min|f’(x)|, M1=max|f’(x)|.
Это вытекает из следующих формул. Рассмотрим случай неподвижного конца b и f(b)>0.
 Имеем из (3.9) . Отсюда
. Учитывая, что , мы можем записать  или
.
Заменяя в знаменателе правой части (ξ-xn-1) на (b-xn-1) и учитывая, что (ξ-xn-1)< (b-xn-1), получим , что и требовалось доказать (см. неравенство (3.14)).
Доказательство сходимости для случая рис.3 (f’’(x) меняет знак; в общем случае как  f’, так и f’’ могут менять знаки) более сложное и здесь не приводится.

Скачать решение

В задачах определить количество действительных корней уравнения f(x) = 0, отделить эти корни и, применяя метод хорд и касательных, найти их приближенные значения с точностью до 0.001.

загрузка...