Формула прямоугольников

Формула средних прямоугольников
Оценка остаточного члена формулы: , или .

Назначение сервиса. Сервис предназначен для онлайн вычисления определенного интеграла по формуле прямоугольников.

Инструкция. Введите подынтегральную функцию f(x), нажмите Решить. Полученное решение сохраняется в файле Word. Также создается шаблон решения в Excel. Ниже представлена видеоинструкция.

Подынтегральная функция f(x) =
Пределы интегрирования до . Точность округления
Количество интервалов разбиения n = или Шаг h =
Метод численного интегрирования функций

Формула средних прямоугольников

Это самая простая квадратурная формула вычисления интеграла, в которой используется одно значение функции
(8.5.1)
где ; h=x1-x0.
Формула (8.5.1) представляет собой центральную формулу прямоугольников. Вычислим остаточный член. Разложим в ряд Тейлора функцию y=f(x) в точке ε0:
(8.5.2)
где ; . Проинтегрируем (8.5.2):
(8.5.3)

Во втором слагаемом подынтегральная функция нечетная, а пределы интегрирования симметричны относительно точки ε0. Поэтому второй интеграл равен нулю. Таким образом, из (8.5.3) следует .
Т. к. второй множитель подынтегрального выражения не меняет знак, то по теореме о среднем получим , где . После интегрирования получим . (8.5.4)
Сравнивая с остаточным членом формулы трапеций, мы видим, что погрешность формулы прямоугольников в два раза меньше, чем погрешность формулы трапеций. Этот результат верен, если в формуле прямоугольников мы берём значение функции в средней точке.
Получим формулу прямоугольников и остаточный член для интервала [a, b]. Пусть задана сетка xi=a+ih, i=0,1,...,n, . Рассмотрим сетку εi0+ih, i=1,2,..,n, ε0=a-h/2. Тогда . (8.5.5)
Остаточный член .
Геометрически формула прямоугольников может быть представлена следующим рисунком:

Если функция f(x) задана таблично, то используют либо левостороннюю формулу прямоугольников (для равномерной сетки)

либо правостороннюю формулу прямоугольников

.
Погрешность этих формул оценивается через первую производную. Для интервала [x0, x1] погрешность равна

; .
После интегрирования получим .

Пример. Вычислить интеграл при n=5:
а) по формуле трапеций;
б) по формуле прямоугольников;
в) по формуле Симпсона;
г) по формуле Гаусса;
д) по формуле Чебышева.
Рассчитать погрешность.
Решение. Для 5-ти узлов интегрирования шаг сетки составит 0.125.
При решении будем пользоваться таблицей значений функции. Здесь f(x)=1/x.



x


f(x)

x0

0.5

y0

2

x1

0.625

y1

1.6

x2

0.750

y2

1.33

x3

0.875

y3

1.14

x4

1.0

y4

1

a) формула трапеций:
I=h/2×[y0+2(y1+y2+y3)+y4];
I=(0.125/2)×[2+2(1.6+1.33+1.14)+1]=0.696;
R= [-(b-a)/12]×h×y¢¢(x);
f¢¢(x)=2/(x3).
Максимальное значение второй производной функции на интервале [0,5;1] равно 16: max {f¢¢(x)}, xÎ[0.5,1]=2/(0.53)=16, поэтому
R=[-(1-0.5)/12]×0.125×16=-0.0833;
б) формула прямоугольников:
для левосторонней формулы I=h×(y0+y1+y2+y3);
I=0.125×(2+1.6+1.33+1.14)=0.759;
R=[(b-a)/6]×h2×y¢¢(x);
R=[(1-0.5)/6]×0.1252×16=0.02;
в) формула Симпсона:
I=(2h/6)×{y0+y4+4×(y1+y3)+2×y2};
I=(2×0.125)/6×{2+1+4×(1.6+1.14)+2×1.33}=0.693;
R=[-(b-a)/180]×h4×y(4)(x);
f(4)(x)=24/(x5)=768;
R=[-(1-0.5)/180]×(0.125)4×768=-5.2e-4;
г) формула Гаусса:
I=(b-a)/2×[A1×f(x1)+ A2×f(x2)+ A3×f(x3)+ A4×f(x4)+ A5×f(x5)];
xi =(b+a)/2+ti (b-a)/2
(Ai , ti - табличные значения).





t (n=5)

A (n=5)

x1

0.9765

y1

1.02

t1

0.90617985

A1

0.23692688

x2

0.8846

y2

1.13

t2

0.53846931

A2

0.47862868

x3

0.75

y3

1.33

t3

0

A3

0.56888889

x4

0.61

y4

1.625

t4

-0.53846931

A4

0.47862868

x5

0.52

y5

1.91

t5

-0.90617985

A5

0.23692688

I=(1-0.5)/2×(0.2416+0.5408+0.7566+0.7777+0.4525)=0.6923;
д) формула Чебышева:
I=[(b-a)/n] ×S f(xi), i=1..n,
xi=(b+a)/2+[ ti (b-a)]/2 - необходимое приведение интервала интегрирования к интервалу [­­-1;1].

Для n=5

t1

0.832498

t2

0.374541

t3

0

t4

-0.374541

t5

-0.832498

Найдем значения x и значения функции в этих точках:

x1

0,958

f(x1)

1,043

x2

0,844

f(x2)

1,185

x3

0,75

f(x3)

1,333

x4

0,656

f(x4)

1,524

x5

0,542

f(x5)

1,845

Сумма значений функции равна 6,927.
I=(1-0,5)/5×6,927=0,6927.
загрузка...