Проверка наличия предпосылок МНК

1. Первая предпосылка МНК – случайный характер остатков εi. Для проверки этого свойства определяют значения εi и строится график зависимости εi от теоретических значений результативного признака.
Если на графике получена горизонтальная полоса остатков εi то они представляют собой случайные величины и МНК оправдан, теоретические значения yx независимы от εi.
При этом возможны следующие случаи, если εi зависит от yx:
- остатки εi не случайны;
- остатки εi не имеют постоянной дисперсии;
- остатки εi носят систематический характер.

2. Вторая предпосылка МНК – нулевая средняя величина остатков, не зависящая от εi. Для проверки этой предпосылки строится график зависимости случайных остатков εi от факторов, включенных в регрессию xi.
Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений xi. Если же график показывает зависимости εi от xi, то это свидетельствует о наличии систематической погрешности модели, причины которой могут быть разные.
Возможно, нарушена третья предпосылка МНК и дисперсия остатков не постоянна для каждого значения фактора xi. Может быть, неправильно подобрана модель.
Корреляция случайны остатков с факторными признаками, позволяет проводить корректировку модели, например, использовать кусочно-линейные модели.

3. В соответствии с третей предпосылкой МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора xi остатки εi имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность.
Проверка на наличие гетероскедастичности.
a) Методом графического анализа остатков.
В этом случае по оси абсцисс откладываются значения объясняющей переменной Xi, а по оси ординат квадраты отклонения εi2.
Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии гетероскедастичности.
b) При помощи теста ранговой корреляции Спирмена.

4. При построение регрессионных моделей важно соблюдение четвертой предпосылки МНК – отсутствие автокорреляции остатков, т.е. значения остатков εi распределены независимо друг от друга.
Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Коэффициент автокорреляции определяется по формуле линейного коэффициента корреляции: . Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.

Пятая предпосылка МНК о нормальном распределении остатков может быть визуально проверена путем графического изображения ряда распределения остаточных величин и сравнения с кривой нормального распределения.
О соответствии эмпирического распределения теоретическому можно судить по величине эксцесса (Е≈0):
где М4 – центральный момент четвертого порядка, который определяется по формуле:

Условия Гаусса — Маркова для модели парной регрессии

  • случайный член регрессии в каждом наблюдении имеет нулевое математическое ожидание M[ei]=0 для любого i;
  • дисперсия случайного члена регрессии σ2(ei) не зависит от номера наблюдения i;
  • случайные члены регрессии в разных наблюдениях не зависят друг от друга, то есть cov(ei,ej)=0 если i¹j;
  • случайный член регрессии и объясняющая переменная в каждом наблюдении независимы друг от друга, то есть cov(xi,ej)=0 для любого i.
    Если выполняются условия Гаусса — Маркова, то параметры регрессии, найденные методом наименьших квадратов, являются несмещёнными, состоятельными и эффективными оценками.
  • загрузка...