Уравнение регрессии в стандартизованном виде

Задание.
  1. Для заданного набора данных постройте линейную модель множественной регрессии. Оцените точность и адекватность построенного уравнения регрессии.
  2. Дайте экономическую интерпретацию параметров модели.
  3. Рассчитайте стандартизованные коэффициенты модели и запишите уравнение регрессии в стандартизованном виде. Верно ли утверждение, что цена блага оказывает большее влияние на объем предложения блага, чем заработная плата сотрудников?
  4. Для полученной модели (в естественной форме) проверьте выполнение условия гомоскедастичности остатков, применив тест Голдфельда-Квандта.
  5. Проверьте полученную модель на наличие автокорреляции остатков с помощью теста Дарбина-Уотсона.
  6. Проверьте, адекватно ли предположение об однородности исходных данных в регрессионном смысле. Можно ли объединить две выборки (по первым 8 и остальным 8 наблюдениям) в одну и рассматривать единую модель регрессии Y по X?

1. Оценка уравнения регрессии. Определим вектор оценок коэффициентов регрессии с помощью сервиса Уравнение множественной регрессии. Согласно методу наименьших квадратов, вектор s получается из выражения: s = (XTX)-1XTY
Матрица X

1 182.94 1018
1 193.45 920
1 160.09 686
1 157.99 405
1 123.83 683
1 152.02 530
1 130.53 525
1 137.38 418
1 137.58 425
1 118.78 161
1 142.9 242
1 99.49 226
1 116.17 162
1 185.66 70

Матрица Y
4.07
4
2.98
2.2
2.83
3
2.35
2.04
1.97
1.02
1.44
1.22
1.11
0.82

Матрица XT
1 1 1 1 1 1 1 1 1 1 1 1 1 1
182.94 193.45 160.09 157.99 123.83 152.02 130.53 137.38 137.58 118.78 142.9 99.49 116.17 185.66
1018 920 686 405 683 530 525 418 425 161 242 226 162 70

Умножаем матрицы, (XTX)
XT X =
142038,816471
2038,81307155,608995591,55
6471995591,554062413

В матрице, (XTX) число 14, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы XT и 1-го столбца матрицы X
Умножаем матрицы, (XTY)
XT Y =
31,05
4737,044
18230,79

Находим обратную матрицу (XTX)-1

2.25 -0.0161 0.00037
-0.0161 0.000132 -7.0E-6
0.00037 -7.0E-6 1.0E-6


Вектор оценок коэффициентов регрессии равен
Y(X) =
2,25-0,01610,00037
-0,01610,000132-7,0E-6
0,00037-7,0E-61,0E-6
*
31,05
4737,044
18230,79
=
0,18
0,00297
0,00347

Уравнение регрессии (оценка уравнения регрессии)
Y = 0.18 + 0.00297X1 + 0.00347X2

2. Матрица парных коэффициентов корреляции R. Число наблюдений n = 14. Число независимых переменных в модели равно 2, а число регрессоров с учетом единичного вектора равно числу неизвестных коэффициентов. С учетом признака Y, размерность матрицы становится равным 4. Матрица, независимых переменных Х имеет размерность (14 х 4).
Матрица, составленная из Y и X

1 4.07 182.94 1018
1 4 193.45 920
1 2.98 160.09 686
1 2.2 157.99 405
1 2.83 123.83 683
1 3 152.02 530
1 2.35 130.53 525
1 2.04 137.38 418
1 1.97 137.58 425
1 1.02 118.78 161
1 1.44 142.9 242
1 1.22 99.49 226
1 1.11 116.17 162
1 0.82 185.66 70


Транспонированная матрица.

1 1 1 1 1 1 1 1 1 1 1 1 1 1
4.07 4 2.98 2.2 2.83 3 2.35 2.04 1.97 1.02 1.44 1.22 1.11 0.82
182.94 193.45 160.09 157.99 123.83 152.02 130.53 137.38 137.58 118.78 142.9 99.49 116.17 185.66
1018 920 686 405 683 530 525 418 425 161 242 226 162 70


Матрица ATA.

14 31.05 2038.81 6471
31.05 83.37 4737.04 18230.79
2038.81 4737.04 307155.61 995591.55
6471 18230.79 995591.55 4062413


Полученная матрица имеет следующее соответствие:

∑n ∑y ∑x1 ∑x2
∑y ∑y2 ∑x1 y ∑x2 y
∑x1 ∑yx1 ∑x1 2 ∑x2 x1
∑x2 ∑yx2 ∑x1 x2 ∑x2 2

Найдем парные коэффициенты корреляции.



Признаки x и y ∑{xi} ∑{yi} ∑{xiyi}
Для y и x1 2038.81 145.629 31.05 2.218 4737.044 338.36
Для y и x2 6471 462.214 31.05 2.218 18230.79 1302.199
Для x1 и x2 6471 462.214 2038.81 145.629 995591.55 71113.682

Признаки x и y
Для y и x1 731.797 1.036 27.052 1.018
Для y и x2 76530.311 1.036 276.641 1.018
Для x1 и x2 76530.311 731.797 276.641 27.052

Матрица парных коэффициентов корреляции R:
- y x1 x2
y 1 0.558 0.984
x1 0.558 1 0.508
x2 0.984 0.508 1

Для отбора наиболее значимых факторов xi учитываются следующие условия:
- связь между результативным признаком и факторным должна быть выше межфакторной связи;
- связь между факторами должна быть не более 0.7. Если в матрице есть межфакторный коэффициент корреляции rxjxi > 0.7, то в данной модели множественной регрессии существует мультиколлинеарность.;
- при высокой межфакторной связи признака отбираются факторы с меньшим коэффициентом корреляции между ними.
В нашем случае все парные коэффициенты корреляции |r|<0.7, что говорит об отсутствии мультиколлинеарности факторов.

Модель регрессии в стандартном масштабе

Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:

где хji - значение переменной хji в i-ом наблюдении.

Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение S.
Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:
ty = ∑βjtxj
Для оценки β-коэффициентов применим МНК. При этом система нормальных уравнений будет иметь вид:
rx1y1+rx1x2•β2 + ... + rx1xm•βm
rx2y=rx2x1•β1 + β2 + ... + rx2xm•βm
...
rxmy=rxmx1•β1 + rxmx2•β2 + ... + βm
Для наших данных (берем из матрицы парных коэффициентов корреляции):
0.558 = β1 + 0.508β2
0.984 = 0.508β1 + β2
Данную систему линейных уравнений решаем методом Гаусса: β1 = 0.0789; β2 = 0.944;
Стандартизированная форма уравнения регрессии имеет вид:
y0 = 0.0789x1 + 0.944x2
Найденные из данной системы β–коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:

Стандартизированные частные коэффициенты регрессии. Стандартизированные частные коэффициенты регрессии - β-коэффициенты (βj) показывают, на какую часть своего среднего квадратического отклонения S(у) изменится признак-результат y с изменением соответствующего фактора хj на величину своего среднего квадратического отклонения (Sхj) при неизменном влиянии прочих факторов (входящих в уравнение).
По максимальному βj можно судить, какой фактор сильнее влияет на результат Y.
По коэффициентам эластичности и β-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.
Коэффициент βj может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (xj) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).
Косвенное влияние измеряется величиной: ∑βirxj,xi, где m - число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата - rxj,y.
Так для нашего примера непосредственное влияние фактора x1 на результат Y в уравнении регрессии измеряется βj и составляет 0.0789; косвенное (опосредованное) влияние данного фактора на результат определяется как:
rx1x2β2 = 0.508 * 0.944 = 0.4796

загрузка...