Зачетное задание по эконометрике

Цель работы
Построение и анализ моделей линейной регрессии.


Оборудование и средства
Персональный компьютер, электронные таблицы MS Excel.

Задание
Исследуется зависимость размера дивидендов y акций группы компаний от доходности акций x1, дохода компании x2 и объема инвестиций в расширение и модернизацию производства x3. Исходные данные представлены выборкой объема n=50.

Тема I. Парная линейная регрессия
Постройте парные линейные регрессии — зависимости признака y от факторов x1, x2, x3 взятых по отдельности. Для каждой объясняющей переменной:

  1. Постройте диаграмму рассеяния (поле корреляции). При построении выберите тип диаграммы «Точечная» (без отрезков, соединяющих точки).
  2. Вычислите коэффициенты уравнения выборочной парной линейной регрессии (для вычисления коэффициентов регрессии воспользуйтесь встроенной функцией ЛИНЕЙН (функция находится в категории «Статистические») или надстройкой Пакет Анализа), коэффициент детерминации, коэффициент корреляции (функция КОРЕЛЛ), среднюю ошибку аппроксимации .
  3. Запишите полученное уравнение выборочной регрессии. Дайте интерпретацию найденным в предыдущем пункте значениям.
  4. Постройте на поле корреляции прямую линию выборочной регрессии по точкам .
  5. Постройте диаграмму остатков.
  6. Проверьте статистическую значимость коэффициентов регрессии по критерию Стьюдента (табличное значение определите с помощью функции СТЬЮДРАСПОБР) и всего уравнения в целом по критерию Фишера (табличное значение Fтабл определите с помощью функции FРАСПОБР).
  7. Постройте доверительные интервалы для коэффициентов регрессии. Дайте им интерпретацию.
  8. Постройте прогноз для значения фактора, на 50% превышающего его среднее значение.
  9. Постройте доверительный интервал прогноза. Дайте ему экономическую интерпретацию.
  10. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемого фактора на показатель.

Тема II. Множественная линейная регрессия
1. Постройте выборочную множественную линейную регрессию показателя на все указанные факторы. Запишите полученное уравнение, дайте ему экономическую интерпретацию.
2. Определите коэффициент детерминации, дайте ему интерпретацию. Вычислите среднюю абсолютную ошибку аппроксимации и дайте ей интерпретацию.
3. Проверьте статистическую значимость каждого из коэффициентов и всего уравнения в целом.
4. Постройте диаграмму остатков.
5. Постройте доверительные интервалы коэффициентов. Для статистически значимых коэффициентов дайте интерпретации доверительных интервалов.
6. Постройте точечный прогноз значения показателя y при значениях факторов, на 50% превышающих их средние значения.
7. Постройте доверительный интервал прогноза, дайте ему экономическую интерпретацию.
8. Постройте матрицу коэффициентов выборочной корреляции между показателем и факторами. Сделайте вывод о наличии проблемы мультиколлинеарности.
9. Оцените полученные результаты — сделайте выводы о качестве построенной модели, влиянии рассматриваемых факторов на показатель.

Методические пояснения. 1. Для вычисления коэффициентов регрессии воспользуйтесь встроенной функцией ЛИНЕЙН (функция находится в категории «Статистические»), обратите внимание, что эта функция является функцией массива, поэтому ее использование подразумевает выполнение следующих шагов:
1) В свободном месте рабочего листа выделите область ячеек размером 5 строк и 2 столбца для вывода результатов;
2) В Мастере функций (категория «Статистические») выберите функцию ЛИНЕЙН.
3) Заполните поля аргументов функции:
Известные_значения_yадреса ячеек, содержащих значения признака ;
Известные_значения_x адреса ячеек, содержащих значения фактора ;
Константа — значение (логическое), указывающее на наличие свободного члена в уравнении регрессии: укажите в поле Константа значение 1, тогда свободный член рассчитывается обычным образом (если значение поля Константа равно 0, то свободный член полагается равным 0);
Статистика — значение (логическое), которое указывает на то, следует ли выводить дополнительную информацию по регрессионному анализу или нет: укажите в поле Статистика значение равное 1, тогда будет выводиться дополнительная регрессионная информация (если Статистика=0, то выводятся только оценки коэффициентов уравнения регрессии);
4) После того, как будут заполнены все аргументы функции, нажмите комбинацию клавиш <CTRL>+<SHIFT>+<ENTER>.
Результаты расчета параметров регрессионной модели будут выведены в виде следующей таблицы:


Значение коэффициента b

Значение коэффициента a

Стандартная ошибка mb коэффициента b

Стандартная ошибка ma коэффициента a

Коэффициент детерминации R2

Стандартное отклонение остатков Sост

Значение F-статистики

Число степеней свободы, равное n-2

Регрессионная сумма квадратов

Остаточная сумма квадратов

2. Табличные значения распределения Стьюдента определите с помощью функции СТЬЮДРАСПОБР. Аргументы этой функции:
Вероятность — уровень значимости α (можно принять равным 0,05, т.е. 5%);
Степени_свободы — число степеней свободы, для парной линейной регрессии равно n-2, где n — число наблюдений.
3. Табличное значение распределения Фишера определите с помощью функции FРАСПОБР. Аргументы этой функции:
Вероятность — уровень значимости α (можно принять равным 0,05, т.е. 5%);
Степени_свободы1 — число степеней свободы числителя, для парной регрессии равно 1 (т.к. один фактор);
Степени_свободы2 — число степеней свободы знаменателя, для парной регрессии равно n-2, где n — число наблюдений.
4. Коэффициент корреляции вычислите с помощью функции КОРРЕЛ. Аргументы функции:
Массив 1ш и Массив 2 — адреса ячеек, в которых содержатся значения величин, для которых вычисляется коэффициент корреляции.
5. Для вычисления (XTX)-1
1) Построите матрицу .
2) Постройте транспонированную к ней матрицу XT. Для построения матрицы XT необходимо воспользоваться функцией ТРАНСП (категория Ссылки и массивы).
3) матрицу XT необходимо умножить на матрицу X;
Произведение матриц вычисляется с помощью функции МУМНОЖ, аргументами которой являются перемножаемые матрицы. Перемножаемые матрицы должны удовлетворять условию соответствия размеров: матрица размера mxn может быть умножена справа на матрицу размера nxk, в результате получится матрица размера mxk.
В случае множественной регрессии с тремя факторами матрица X будет иметь размер nx4, матрица XT — размер 4xn, а их произведение XTX — размер 4x4.
Функция МУМНОЖ является функцией массива! Поэтому перед использованием функции МУМНОЖ необходимо выделить область размером mxk, в которой будет выведен результат, затем вставить функцию МУМНОЖ, указав ее аргументы. После этого в левой верхней ячейке выделенной области появится первый элемент результирующей матрицы. Для вывода всей матрицы нажмите комбинацию клавиш <CTRL>+<SHIFT>+<ENTER>.
4) найти обратную матрицу (XTX)-1;
Обратную матрицу (XTX)-1 вычислите с помощью функции МОБР. Функция МОБР также является функцией массива и ее использование аналогично функции МУМНОЖ: сначала необходимо выделить область ячеек, в которой будет получена обратная матрица, вставить функцию МОБР, затем <CTRL>+<SHIFT>+<ENTER>.

6. Коэффициенты множественной линейной регрессии вычисляются с помощью функции ЛИНЕЙН. Для того чтобы использовать эту функцию для вычисления параметров множественной регрессии необходимо
1) Сначала выделить на рабочем листе область размером 5x(k+1), где k — число объясняющих переменных.
2) Затем заполнить поля аргументов этой функции, которые имеют тот же смысл, что и в случае парной регрессии:
Известные_значения_yадреса ячеек, содержащих значения признака y;
Известные_значения_x адреса ячеек, содержащих значения всех объясняющих переменных.
Обратите внимание: выборочные значения факторов должны располагаться рядом друг с другом (в смежной области), причем предполагается, что в первом столбце (строке) содержатся значения первой объясняющей переменной, во втором столбце — второй и т.д.
Константазначение (логическое), указывающее на наличие свободного члена в уравнении регрессии: укажите в поле Константа значение 1, тогда свободный член рассчитывается обычным образом (если значение поля Константа равно 0, то свободный член полагается равным 0);
Статистиказначение (логическое), которое указывает на то, следует ли выводить дополнительную информацию по регрессионному анализу или нет: укажите в поле Статистика значение равное 1, тогда будет выводиться дополнительная регрессионная информация (если Статистика=0, то выводятся только оценки коэффициентов уравнения регрессии);

В случае трех объясняющих переменных (k=3) результаты расчета параметров регрессии будут выведены в следующем виде:

Значение коэффициента b3

Значение коэффициента b2

Значение коэффициента b1

Значение коэффициента a

Станд. ошибка mb3 коэфф. b3

Станд. ошибка mb2 коэфф. b2

Станд. ошибка mb1 коэфф. b1

Станд. ошибка ma коэфф. a

Коэффициент детерминации R2

Оценка стандартного отклонения остатков Sост

Значение F-статистики

Число степеней свободы n-k-1

Регрессионная сумма квадратов

Остаточная сумма квадратов

загрузка...