Среднее значение по способу моментов

Метод моментов по сравнению с другими методами проверки согласия требует существенно меньше вычислений (число операций пропорционально объему выборки). Поэтому он может быть рекомендован для использования при проверке согласия с семействами распределений, для которых не разработаны более совершенные методы, а также в качестве быстрого (экспрессного) метода.

Группы

x Кол-во f x * f (x - x ср)2 * f
6.0 - 8.5 7.25 26 188.5 480.74
8.5 - 11.0 9.75 112 1092 362.88
11.0 - 13.5 12.25 210 2572.5 102.9
13.5 - 16.0 14.75 52 767 532.48
400 4620 1479

Решение находим с помощью калькулятора.
Для оценки ряда распределения найдем следующие показатели:

Средняя взвешенная

Среднее значение изучаемого признака по способу моментов.
Среднее значение по способу моментов: формула
где А – условный нуль, равный варианте с максимальной частотой (середина интервала с максимальной частотой), h – шаг интервала.

Находим А = 12.25.
Шаг интервала h = 2.5.

Средний квадрат отклонений по способу моментов.
Среднеквадратическое отклонение по способу моментов: формула

xц x*i x*ifi [x*i]2fi
7.25 -2 -52 104
9.75 -1 -112 112
12.25 0 0 0
14.75 1 52 52
-112 268


Среднеквадратическое отклонение по способу моментов.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).
Формула для средневзвешенного:

Среднеквадратическое отклонение.

Каждое значение ряда отличается от среднего значения 11.55 не более, чем на 1.92.

Как видим, оценки для среднего значения m и квадрата отклонений s рассчитанные по разным формулам совпадают.

Задать вопрос или оставить комментарий Помощь в решении Поиск Поддержать проект