Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона
Критерий согласия Пирсона:
Пример 1. Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.
Решение находим с помощью калькулятора.
Таблица для расчета показателей.
xi | Кол-во, fi | xi * fi | Накопленная частота, S | (x - xср) * f | (x - xср)2 * f | (x - xср)3 * f | Частота, fi/n |
5 | 15 | 75 | 15 | 114.45 | 873.25 | -6662.92 | 0.075 |
7 | 26 | 182 | 41 | 146.38 | 824.12 | -4639.79 | 0.13 |
9 | 25 | 225 | 66 | 90.75 | 329.42 | -1195.8 | 0.13 |
11 | 30 | 330 | 96 | 48.9 | 79.71 | -129.92 | 0.15 |
13 | 26 | 338 | 122 | 9.62 | 3.56 | 1.32 | 0.13 |
15 | 21 | 315 | 143 | 49.77 | 117.95 | 279.55 | 0.11 |
17 | 24 | 408 | 167 | 104.88 | 458.33 | 2002.88 | 0.12 |
19 | 20 | 380 | 187 | 127.4 | 811.54 | 5169.5 | 0.1 |
21 | 13 | 273 | 200 | 108.81 | 910.74 | 7622.89 | 0.065 |
200 | 2526 | 800.96 | 4408.62 | 2447.7 | 1 |
Показатели центра распределения.
Средняя взвешенная
Показатели вариации.
Абсолютные показатели вариации.
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 21 - 5 = 16
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).
Несмещенная оценка дисперсии - состоятельная оценка дисперсии.
Среднее квадратическое отклонение.
Каждое значение ряда отличается от среднего значения 12.63 не более, чем на 4.7
Оценка среднеквадратического отклонения.
Проверка гипотез о виде распределения.
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.
где n*i - теоретические частоты:
Вычислим теоретические частоты, учитывая, что:
n = 200, h=2 (ширина интервала), σ = 4.7, xср = 12.63
i | xi | ui | φi | n*i |
1 | 5 | -1.63 | 0,1057 | 9.01 |
2 | 7 | -1.2 | 0,1942 | 16.55 |
3 | 9 | -0.77 | 0,2943 | 25.07 |
4 | 11 | -0.35 | 0,3752 | 31.97 |
5 | 13 | 0.0788 | 0,3977 | 33.88 |
6 | 15 | 0.5 | 0,3503 | 29.84 |
7 | 17 | 0.93 | 0,2565 | 21.85 |
8 | 19 | 1.36 | 0,1582 | 13.48 |
9 | 21 | 1.78 | 0,0804 | 6.85 |
Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия:
i | ni | n*i | ni-n*i | (ni-n*i)2 | (ni-n*i)2/n*i |
1 | 15 | 9.01 | -5.99 | 35.94 | 3.99 |
2 | 26 | 16.55 | -9.45 | 89.39 | 5.4 |
3 | 25 | 25.07 | 0.0734 | 0.00539 | 0.000215 |
4 | 30 | 31.97 | 1.97 | 3.86 | 0.12 |
5 | 26 | 33.88 | 7.88 | 62.14 | 1.83 |
6 | 21 | 29.84 | 8.84 | 78.22 | 2.62 |
7 | 24 | 21.85 | -2.15 | 4.61 | 0.21 |
8 | 20 | 13.48 | -6.52 | 42.53 | 3.16 |
9 | 13 | 6.85 | -6.15 | 37.82 | 5.52 |
∑ | 200 | 200 | 22.86 |
Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям σ, k = 9, r=2 (параметры xcp и σ оценены по выборке).
Kkp(0.05;6) = 12.59159; Kнабл = 22.86
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены не по нормальному закону. Другими словами, эмпирические и теоретические частоты различаются значимо.
Пример 2. Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.
Решение.
Таблица для расчета показателей.
xi | Кол-во, fi | xi * fi | Накопленная частота, S | (x - xср) * f | (x - xср)2 * f | (x - xср)3 * f | Частота, fi/n |
0.3 | 6 | 1.8 | 6 | 5.77 | 5.55 | -5.34 | 0.03 |
0.5 | 9 | 4.5 | 15 | 6.86 | 5.23 | -3.98 | 0.045 |
0.7 | 26 | 18.2 | 41 | 14.61 | 8.21 | -4.62 | 0.13 |
0.9 | 25 | 22.5 | 66 | 9.05 | 3.28 | -1.19 | 0.13 |
1.1 | 30 | 33 | 96 | 4.86 | 0.79 | -0.13 | 0.15 |
1.3 | 26 | 33.8 | 122 | 0.99 | 0.0375 | 0.00143 | 0.13 |
1.5 | 21 | 31.5 | 143 | 5 | 1.19 | 0.28 | 0.11 |
1.7 | 24 | 40.8 | 167 | 10.51 | 4.6 | 2.02 | 0.12 |
1.9 | 20 | 38 | 187 | 12.76 | 8.14 | 5.19 | 0.1 |
2.1 | 8 | 16.8 | 195 | 6.7 | 5.62 | 4.71 | 0.04 |
2.3 | 5 | 11.5 | 200 | 5.19 | 5.39 | 5.59 | 0.025 |
200 | 252.4 | 82.3 | 48.03 | 2.54 | 1 |
Показатели центра распределения.
Средняя взвешенная
Показатели вариации.
Абсолютные показатели вариации.
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 2.3 - 0.3 = 2
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).
Несмещенная оценка дисперсии - состоятельная оценка дисперсии.
Среднее квадратическое отклонение.
Каждое значение ряда отличается от среднего значения 1.26 не более, чем на 0.49
Оценка среднеквадратического отклонения.
Проверка гипотез о виде распределения.
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.
где n*i - теоретические частоты:
Вычислим теоретические частоты, учитывая, что:
n = 200, h=0.2 (ширина интервала), σ = 0.49, xср = 1.26
i | xi | ui | φi | n*i |
1 | 0.3 | -1.96 | 0,0573 | 4.68 |
2 | 0.5 | -1.55 | 0,1182 | 9.65 |
3 | 0.7 | -1.15 | 0,2059 | 16.81 |
4 | 0.9 | -0.74 | 0,3034 | 24.76 |
5 | 1.1 | -0.33 | 0,3765 | 30.73 |
6 | 1.3 | 0.0775 | 0,3977 | 32.46 |
7 | 1.5 | 0.49 | 0,3538 | 28.88 |
8 | 1.7 | 0.89 | 0,2661 | 21.72 |
9 | 1.9 | 1.3 | 0,1691 | 13.8 |
10 | 2.1 | 1.71 | 0,0909 | 7.42 |
11 | 2.3 | 2.12 | 0,0422 | 3.44 |
Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия:
i | ni | n*i | ni-n*i | (ni-n*i)2 | (ni-n*i)2/n*i |
1 | 6 | 4.68 | -1.32 | 1.75 | 0.37 |
2 | 9 | 9.65 | 0.65 | 0.42 | 0.0435 |
3 | 26 | 16.81 | -9.19 | 84.53 | 5.03 |
4 | 25 | 24.76 | -0.24 | 0.0555 | 0.00224 |
5 | 30 | 30.73 | 0.73 | 0.53 | 0.0174 |
6 | 26 | 32.46 | 6.46 | 41.75 | 1.29 |
7 | 21 | 28.88 | 7.88 | 62.07 | 2.15 |
8 | 24 | 21.72 | -2.28 | 5.2 | 0.24 |
9 | 20 | 13.8 | -6.2 | 38.41 | 2.78 |
10 | 8 | 7.42 | -0.58 | 0.34 | 0.0454 |
11 | 5 | 3.44 | -1.56 | 2.42 | 0.7 |
∑ | 200 | 200 | 12.67 |
Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям σ, k = 11, r=2 (параметры xcp и σ оценены по выборке).
Kkp(0.05;8) = 15.50731; Kнабл = 12.67
Наблюдаемое значение статистики Пирсона не попадает в критическую область: Кнабл < Kkp, поэтому нет оснований отвергать основную гипотезу. Справедливо предположение о том, что данные выборки имеют нормальное распределение.