Теория массового обслуживания (СМО)

Теория массового обслуживания исследует на основе теорий вероятностей математические методы количественной оценки процессов массового обслуживания. Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений.

Сервис представлен тремя онлайн-калькуляторами:

  1. Одноканальные СМО.
  2. Многоканальные СМО.
  3. Замкнутые системы массового обслуживания СМО.

Для решения задач на тему Теория массового обслуживания необходимо определиться с типом модели СМО: одноканальные (см. примеры задач для одноканальных СМО) или многоканальные (см. примеры задач для многоканальных СМО). В многоканальных СМО количество устройств обслуживания n (количество рабочих, кассиров, бригад, моек и т.п.) больше одного. Обычно интенсивность потока заявок λ задана явно. Интенсивность потока обслуживания μ может задаваться в виде времени обслуживания tобс. В сервисе необходимо ввести либо параметр μ, либо tобс (только одно из двух).

Выбор СМО зависит как от числа каналов n, так и от допустимой длины очереди m. По указанным признакам различается ряд типов СО, перечисленных в таблице.

№ п/п Параметры СО Тип СО
n m
1 1 0 Одноканальная, без очереди
2 n > 1 0 Многоканальная, без очереди
3 1 1 < m <∞ Одноканальная, с ограниченной очередью
4 n > 1 1 < m<∞ Многоканальная, с ограниченной очередью
5 1 m = ∞ Одноканальная, с неограниченной очередью
6 n > 1 m = ∞ Многоканальная, с неограниченной очередью

По числу обслуживающих каналов различают одноканальные и многоканальные СО.
В зависимости от целочисленного значения m используются следующие названия в классификации типов СО:

  1. m = 0 – без очереди;
  2. m > 0 – с очередью.

Если число мест в очереди m является конечным, то в СО могут происходить отказы в предоставлении обслуживания некоторым заявкам. В связи с этим СО указанного типа называются системами с отказами. Отклоняются от обслуживания те заявки, в момент прихода которых все места в очереди случайно оказались занятыми, или, если m =0, все каналы оказались занятыми. Считается, что заявка, получившая отказ в обслуживании, навсегда теряется для СО. Таким образом, пропускная способность СО этого типа всегда меньше 100%.
Если m не ограничено, что иногда условно записывают как m = ∞ , то соответствующая СО называется системой с ожиданием. В СО данного типа пришедшая заявка при  отсутствии возможности немедленного обслуживания ожидает обслуживания, какой бы длинной ни были очередь и продолжительность времени ожидания.

Все СМО делятся на СМО с отказами (параметр m не используется), СМО с ограниченной длиной очереди и СМО с неограниченной очередью. Параметр m (длина очереди) используется для последних двух СМО. При этом в СМО с неограниченной очередью можно указывать любое значение m. Например, m = 3. Тогда будут рассчитаны вероятности нахождения в очереди 1,2,3 заявки.

Временные параметры рассчитываются в часах или в минутах, в зависимости от заданного параметра λ.

Полученное решение сохраняется в файле Word. Для редактирования формул можно использовать редактор формул Microsoft Equation.

Перейти к онлайн решению своей задачи

Интернет-провайдер в небольшом городе имеет 5 выделенных каналов обслуживания. В среднем на обслуживание одного клиента уходит 25 минут. В систему в среднем поступает 6 заказов в час. Если свободных каналов нет, следует отказ. Определить характеристики обслуживания: вероятность отказа, среднее число занятых обслуживанием линий связи, абсолютную и относительную пропускные способности, вероятность обслуживания. Найти число выделенных каналов, при котором относительная пропускная способность системы будет не менее 0,95. Считать, что потоки заявок и обслуживаний простейшие.

Формулы для расчета параметров простейших СМО

, , , a = , b = , γ =
Показатели эффективности системы Чистая СМО с отказами (n, a) СМО с ограничением на время пребывания в очереди (n, a,b) СМО с ограничением на длину очереди (n, a,m) Чистая СМО с ожиданием (n, a), γ < 1
1 2 3 4 5
Вероятность того, что все каналы свободны р0 = р0= p0= р0 =
Вероятность того, что занято k каналов 0 ≤ kn Рk = р0 Рk= р0 рk= р0 Рk = р0
Вероятность того, что заняты все n каналов, s заявок в очереди - рn+s = рn, рn+s= γs× рn; 1 ≤ s ≤ m. рn+ss× рn
Вероятность отказаротк = рn ротк = ротк = рn+m ротк = 0
Вероятность полной загрузки системы рn.з = рn рn.з = рn.з = рn рn =
Вероятность обслуживания, относительная пропускная способность системы робс = = 1- рn = робс = = 1 - ротк = робс = = = 1 - рn+m = робс = = 1
Абсолютная пропускная способность системы lb = lробс lb = lробс = l - n lb = lробс = m × lb = l
Вероятность занятости канала рзк = kз = рзк = kз = рзк = kз = рзк = kз =
Среднее число свободных каналов = = = =
Вероятность простоя канала pп.к, коэффициент простоя оборудования кn рn.к = kn = рn.к = kn = рn.к = kn = рn.к = kn =
1 2 3 4 5
Среднее число заявок в очереди - = = = рn
Вероятность наличия очереди - рн.о = рн.о = рn рн =pn
Среднее время наличия очереди - - = =
Среднее время пребывания заявки в очереди - = = =
Среднее время пребывания заявки в системе = = , l = = , l = = , l =
Среднее время занятости канала (любого) = = + =
Среднее время простоя канала
Среднее время полной загрузки системы -
Среднее время неполной загрузки системы
загрузка...