Новые калькуляторы

Симплексный метод решения задач линейного программирования

При графическом методе решения задач ЛП мы фактически из множества вершин, принадлежащих границе множества решений системы неравенств, выбрали такую вершину, в которой значение целевой функции достигало максимума (минимума). В случае двух переменных этот метод совершенно нагляден и позволяет быстро находить решение задачи.

Если в задаче три и более переменных, а в реальных экономических задачах как раз такая ситуация, трудно представить наглядно область решений системы ограничений. Такие задачи решаются с помощью симплекс-метода или методом последовательных улучшений. Идея метода проста и заключается в следующем.

По определенному правилу находится первоначальный опорный план (некоторая вершина области ограничений). Проверяется, является ли план оптимальным. Если да, то задача решена. Если нет, то переходим к другому улучшенному плану - к другой вершине. значение целевой функции на этом плане (в этой вершине) заведомо лучше, чем в предыдущей. Алгоритм перехода осуществляется с помощью некоторого вычислительного шага, который удобно записывать в виде таблиц, называемых симплекс-таблицами. Так как вершин конечное число, то за конечное число шагов мы приходим к оптимальному решению.

Рассмотрим симплексный метод на конкретном примере задачи о составлении плана.

Еще раз заметим, что симплекс-метод применим для решения канонических задач ЛП, приведенных к специальному виду, т. е. имеющих базис, положительные правые части и целевую функцию, выраженную через небазисные переменные. Если задача не приведена к специальному виду, то нужны дополнительные шаги, о которых мы поговорим позже.

Рассмотрим задачу о плане производства, предварительно построив модель и приведя ее к специальному виду.

Задача.

Для изготовления изделий А и В склад может отпустить сырья не более 80 единиц. Причем на изготовление изделия А расходуется две единицы, а изделия В - одна единица сырья. Требуется спланировать производство так, чтобы была обеспечена наибольшая прибыль, если изделий А требуется изготовить не более 50 шт., а изделий В - не более 40 шт. Причем, прибыль от реализации одного изделия А - 5 руб., а от В - 3 руб.

Построим математическую модель, обозначив за х1 количество изделий А в плане, за х2 - количество изделий В. тогда система ограничений будет выглядеть следующим образом:

Приведем задачу к каноническому виду, введя дополнительные переменные:

(3.10)

-F = -5x1 - 3x2 → min.

Эта задача имеет специальный вид (с базисом, правые части неотрицательны). Ее можно решить симплекс-методом.

I этап. Запись задачи в симплекс-таблицу. Между системой ограничений задачи (3.10) и симплекс-таблицей взаимно-однозначное соответствие. Строчек в таблице столько, сколько равенств в системе ограничений, а столбцов - столько, сколько свободных переменных. Базисные переменные заполняют первый столбец, свободные - верхнюю строку таблицы. Нижняя строка называется индексной, в ней записываются коэффициенты при переменных в целевой функции. В правом нижнем углу первоначально записывается 0, если в функции нет свободного члена; если есть, то записываем его с противоположным знаком. На этом месте (в правом нижнем углу) будет значение целевой функции, которое при переходе от одной таблицы к другой должно увеличиваться по модулю. Итак, нашей системе ограничений соответствует таблица 3.4, и можно переходить ко II этапу решения.

Таблица 3.4

базисные

1

2

свободные

х3

х4

х5

1

0

2

0

1

1

50

40

80

-F

-5

-3

0

 

II этап. Проверка опорного плана на оптимальность.

Данной таблице 3.4 соответствует следующий опорный план:

(х1, х2, х3, х4, х5) = (0, 0, 50, 40, 80).

Свободные переменные х1, х2 равны 0; х1 = 0, х2 = 0. А базисные переменные х3, х4, х5 принимают значения х3 = 50, х4 = 40, х5 = 80 - из столбца свободных членов. Значение целевой функции:

-F = - 5х1 - 3х2 = -5 · 0 - 3 · 0 = 0.

Наша задача - проверить, является ли данный опорный план оптимальным. для этого необходимо просмотреть индексную строку - строку целевой функции F.

Возможны различные ситуации.

1. В индексной F-строке нет отрицательных элементов. Значит, план оптимален, можно выписать решение задачи. Целевая функция достигла своего оптимального значения, равного числу, стоящему в правом нижнем углу, взятому с противоположным знаком. Переходим к IV этапу.

2. В индексной строке есть хотя бы один отрицательный элемент, в столбце которого нет положительных. Тогда делаем вывод о том, что целевая функция F→∞ неограниченно убывает.

3. В индексной строке есть отрицательный элемент, в столбце которого есть хотя бы один положительный. Тогда переходим к следующему III этапу. пересчитываем таблицу, улучшая опорный план.

III этап. Улучшение опорного плана.

Из отрицательных элементов индексной F-строки выберем наибольший по модулю, назовем соответствующий ему столбец разрешающим и пометим "↑".

Чтобы выбрать разрешающую строку, необходимо вычислить отношения элементов столбца свободных членов только к положительным элементам разрешающего столбца. Выбрать из полученных отношений минимальное. Соответствующий элемент, на котором достигается минимум, называется разрешающим. Будем выделять его квадратом.

В нашем примере, , элемент 2 - разрешающий. Строка, соответствующая этому элементу, тоже называется разрешающей (табл. 3.5).

Таблица 3.5

Выбрав разрешающий элемент, делаем перечет таблицы по правилам:

1. В новой таблице таких же размеров, что и ранее, переменные разрешающей строки и столбца меняются местами, что соответствует переходу к новому базису. В нашем примере: х1 входит в базис, вместо х5, которая выходит из базиса и теперь свободная (табл. 3.6).

Таблица 3.6

базисные

-х5

-х2

свободные

х3

 

 

х4

0

 

 

х1

40

-F

 

 

2. На месте разрешающего элемента 2 записываем обратное ему число .

3. Элементы разрешающей строки делим на разрешающий элемент.

4. Элементы разрешающего столбца делим на разрешающий элемент и записываем с противоположным знаком.

5. Чтобы заполнить оставшиеся элементы таблицы 3.6, осуществляем пересчет по правилу прямоугольника. Пусть мы хотим посчитать элемент, стоящий на месте 50.

Соединяем этот элемент мысленно с разрешающим, находим произведение, вычитаем произведение элементов, находящихся на другой диагонали получившегося прямоугольника. Разность делим на разрешающий элемент.

Итак, . Записываем 10 на место, где было 50. Аналогично:

 

, , , .

Таблица 3.7

Имеем новую таблицу 3.7, базисными переменными теперь являются переменные {x3,x4,x1}. Значение целевой функции стало равно -200, т. е. уменьшилось. Чтобы проверить данное базисное решение на оптимальность надо перейти опять ко II этапу. Процесс, очевидно, конечен, критерием остановки являются пункт 1 и 2 II этапа.

Доведем решение задачи до конца. Для этого проверим индексную строку и, увидев в ней отрицательный элемент , назовем соответствующий ему столбец разрешающим и, согласно III этапу, пересчитаем таблицу. Составив отношения и выбрав среди них минимальное  = 40, определили разрешающий элемент 1. теперь пересчет осуществляем согласно правилам 2-5.

Таблица 3.8

базисные

-х5

-х4

свободные

х3

30

х2

0

1

40

х1

20

-F

220

После пересчета таблицы убеждаемся, что в индексной строке нет отрицательных элементов, следовательно, задача решена, базисный план оптимален.

IVэтап. Выписывание оптимального решения.

Если симплекс-метод остановился согласно пункту 1 II этапа, то решение задачи выписывается следующим образом. Базисные переменные принимают значения столбца свободных членов соответственно. В нашем примере х3 = 30, х = 40, х1 = 20. Свободные переменные равны 0, х5 = 0, х4 = 0. Целевая функция принимает значение последнего элемента столбца свободных членов с противоположным знаком: -F = -220 F = 220, в нашем примере функция исследовалась на min, и первоначально F max, поэтому фактически знак поменялся дважды. Итак, х* = (20, 40, 30, 0, 0), F* = 220. Ответ к задаче:

- необходимо в план выпуска включить 20 изделий типа А, 40 изделий типа В, при этом прибыль будет максимальной и будет равна 220 руб.

В конце этого параграфа приведем блок-схему алгоритма симплекс-метода, которая в точности повторяет этапы, но, возможно, для некоторых читателей будет более удобна в пользовании, т. к. стрелочки указывают четкую направленность действий.

Ссылки над прямоугольниками в блок-схеме показывают, к какому этапу или подпункту относится соответствующая группа преобразований. правило нахождения первоначального опорного плана будет сформулировано в пункте 3.7.

Вопросы для самоконтроля

1. Как строится симплекс-таблица?

2. Как отражается смена базиса в таблице?

3. Сформулируйте критерий остановки симплекс-метода.

4. Как организовать пересчет таблицы?

5. С какой строки удобно начинать пересчет таблицы?