Метод прогонки

Назначение. Данный сервис предназначен для решения задач динамического программирования методами прямой и обратной прогонки в онлайн режиме (см. пример решения задачи оптимального распределения инвестиций).
Инструкция. Выберите количество объектов и количество групп возможных вариантов, нажмите Далее. В новом окне выберите метод прогонки.
Количество объектов Количество вариантов
Пример №1. Решить задачу методом динамического программирования в прямом и обратном времени для целевой функции, заданной таблично.
F(x1,x2,x3) = f1(x1) + f2(x2) + f3(x3) → max
x1 + 2x2 + 2x3 ≤ 5
X 0 1 2 3 4 5
f1(x1) 6 7 11 12 15 16
f2(x2) 9 11 13 15    
f3(x3) 8 12 14 16    
Решение.
I этап. Условная оптимизация. f1(L) = max(f1); 0 ≤ x1 ≤ 5; x1 = 0,1,2,3,4,5.
f1(0) = max[6] = 6
f1(1) = max[6, 7] = 7
f1(2) = max[6, 7, 11] = 11
f1(3) = max[6, 7, 11, 12] = 12
f1(4) = max[6, 7, 11, 12, 15] = 15
f1(5) = max[6, 7, 11, 12, 15, 16] = 16
Таблица 1 – Расчет значения функции f1(L)
L 0 1 2 3 4 5
f1(L) 6 7 11 12 15 16
x1 0 1 2 3 4 5
f2(L) = max[f2 + f1(L - 2x2)]; 0 ≤ x2 ≤ 5; x2 = 0,1,2,3,4,5.
f2(0) = max[9+6] = 15
f2(1) = max[9+7] = 16
f2(2) = max[9+11, 11+6] = 20
f2(3) = max[9+12, 11+7] = 21
f2(4) = max[9+15, 11+11, 13+6] = 24
f2(5) = max[9+16, 11+12, 13+7] = 25
Таблица 2 – Расчет значения функции f2(L)
L 0 1 2 3 4 5
f2(L) 15 16 20 21 24 25
x2 0 0 0 0 0 0
f3(L) = max[f3 + f2(L - 2x3)]; 0 ≤ x3 ≤ 5; x3 = 0,1,2,3,4,5.
f3(0) = max[8+15] = 23
f3(1) = max[8+16] = 24
f3(2) = max[8+20, 12+15] = 28
f3(3) = max[8+21, 12+16] = 29
f3(4) = max[8+24, 12+20, 14+15] = 32
f3(5) = max[8+25, 12+21, 14+16] = 33
Таблица 3 – Расчет значения функции f3(L)
L 0 1 2 3 4 5
f3(L) 23 24 28 29 32 33
x3 0 0 0 0 0 0

II этап. Безусловная оптимизация.
Таким образом, максимум f3(5) = 33
При этом x3 = 0, так как f3(5) = 33 достигается при х3=0 (см. таблицу 3).
Остальные x распределяются следующим образом:
L = 5 - 2 * 0 = 5
f2(5) = 25 достигается при х2 = 0 (см. таблицу 2).
L = 5 - 2 * 0 = 5
f1(5) = 16 достигается при х1 = 5 (см. таблицу 1).
L = 5 - 1 * 5 = 0
В итоге наилучший вариант достигается при значениях: x1 = 5, x2 = 0, x3 = 0

Пример №2. Рассмотрим задачу об оптимальном размещении капитала K = nh в m различных независимых фондах (банки, организации, фирма и т.д.), для которых известна ожидаемая прибыль fi при капиталовложениях xi = ih, i = 1..n. Здесь n – количество дискретных приращений h (дискрет), на которые разбит капитал К.
Пусть такие данные имеются по четырем (m=4) фондам для h = 1 млн. руб., n = 6

Решение.
I этап. Условная оптимизация.
1-й шаг: k = 4.
Предположим, что все средства в количестве x4 = 6 отданы 4-у предприятию. В этом случае максимальный доход, как это видно из таблицы 1*, составит 0.56, следовательно:
F4(c4) = g4(x4)
Таблица 1.

0 x1 0 1 2 3 4 5 6
x4 f0(x0) / F4(x4) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0.2 0 0 0 0 0 0.2 0
2 0.33 0 0 0 0 0.33 0 0
3 0.42 0 0 0 0.42 0 0 0
4 0.48 0 0 0.48 0 0 0 0
5 0.53 0 0.53 0 0 0 0 0
6 0.56 0.56* 0 0 0 0 0 0
Таблица 1*.
c1 0 1 2 3 4 5 6
F0(c1) 0 0.2 0.33 0.42 0.48 0.53 0.56
x1 0 1 2 3 4 5 6
2-й шаг: k = 3.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F3(c3) = max [ g3(x3) + F4(c3 - x3)]
Таблица 2.
0 x2 0 1 2 3 4 5 6
x3 f3(x3) / F3(x3) 0 0.2 0.33 0.42 0.48 0.53 0.56
0 0 0 0.2* 0.33 0.42 0.48 0.53 0.56
1 0.15 0.15 0.35* 0.48* 0.57 0.63 0.68 0
2 0.25 0.25 0.45 0.58 0.67 0.73 0 0
3 0.4 0.4 0.6* 0.73* 0.82 0 0 0
4 0.5 0.5 0.7 0.83* 0 0 0 0
5 0.62 0.62 0.82 0 0 0 0 0
6 0.73 0.73 0 0 0 0 0 0
Заполняем таблицу 2*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x2.
Таблица 2*.
c2 0 1 2 3 4 5 6
F3(c2) 0 0.2 0.35 0.48 0.6 0.73 0.83
x2 0 0 1 1 3 3 4
3-й шаг: k = 2.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F2(c2) = max [ g2(x2) + F3(c2 - x2)]
Таблица 3.
0 x3 0 1 2 3 4 5 6
x2 f4(x4) / F2(x2) 0 0.2 0.35 0.48 0.6 0.73 0.83
0 0 0 0.2 0.35 0.48 0.6 0.73 0.83
1 0.25 0.25* 0.45* 0.6 0.73 0.85 0.98 0
2 0.41 0.41 0.61* 0.76* 0.89 1.01 0 0
3 0.55 0.55 0.75 0.9* 1.03* 0 0 0
4 0.65 0.65 0.85 1 0 0 0 0
5 0.75 0.75 0.95 0 0 0 0 0
6 0.8 0.8 0 0 0 0 0 0
Заполняем таблицу 3*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x3.
Таблица 3*.
c3 0 1 2 3 4 5 6
F4(c3) 0 0.25 0.45 0.61 0.76 0.9 1.03
x3 0 1 1 2 2 3 3
4-й шаг: k = 1.
Определяем оптимальную стратегию при распределении средств между остальными предприятиями. При этом рекуррентное соотношение Беллмана имеет вид:
F1(c1) = max [ g1(x1) + F2(c1 - x1)]
Таблица 4.
0 x4 0 1 2 3 4 5 6
x1 f5(x5) / F1(x1) 0 0.25 0.45 0.61 0.76 0.9 1.03
0 0 0 0.25 0.45 0.61 0.76 0.9 1.03
1 0.28 0.28* 0.53* 0.73* 0.89 1.04 1.18 0
2 0.45 0.45 0.7 0.9 1.06 1.21 0 0
3 0.65 0.65 0.9* 1.1* 1.26* 0 0 0
4 0.78 0.78 1.03 1.23 0 0 0 0
5 0.9 0.9 1.15 0 0 0 0 0
6 1.02 1.02 0 0 0 0 0 0
Заполняем таблицу 4*. Для этого на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем звездочкой и указываем соответствующее значение x4.
Таблица 4*.
c4 0 1 2 3 4 5 6
F5(c4) 0 0.28 0.53 0.73 0.9 1.1 1.26
x4 0 1 1 1 3 3 3
II этап. Безусловная оптимизация.
1-й шаг: k = 1.
По данным таблицы 4* максимальный доход при распределении 6 между предприятиями составляет c1 = 6, F1(6) = 1.26. При этом 1-му предприятию нужно выделить x1 = 3.
2-й шаг: k = 2.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c2 = c1 - x1 = 6 - 3 = 3.
По данным таблицы 3* максимальный доход при распределении 3 между предприятиями составляет c2 = 3, F2(3) = 0.61. При этом 2-му предприятию нужно выделить x2 = 2.
3-й шаг: k = 3.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c3 = c2 - x2 = 3 - 2 = 1.
По данным таблицы 2* максимальный доход при распределении 1 между предприятиями составляет c3 = 1, F3(1) = 0.2. При этом 3-му предприятию нужно выделить x3 = 0.
4-й шаг: k = 4.
Определим величину оставшихся денежных средств, приходящихся на долю остальных предприятий.
c4 = c3 - x3 = 1 - 0 = 1.
По данным таблицы 1* максимальный доход при распределении 1 между предприятиями составляет c4 = 1, F4(1) = 0.20. При этом 4-му предприятию нужно выделить x4 = 1.
Таким образом, оптимальный план инвестирования предприятия:
x1 = 3
x2 = 2
x3 = 0
x4 = 1
который обеспечит максимальный доход, равный: F(6) = g1(3) + g2(2) + g3(0) + g4(1) = 0.65 + 0.41 + 0 + 0.20 = 1.26.
загрузка...