Тест Голдфелда-Квандта

В данном случае предполагается, что стандартное отклонение σi = σ(εi) пропорционально значению xi переменной X в этом наблюдении, т.е. σ2i = σ2x2i , i = 1,2,…,n.

Тест Голдфелда-Квандта состоит в следующем:

  • Все n наблюдений упорядочиваются по величине X.
  • Вся упорядоченная выборка после этого разбивается на три подвыборки размерностей k,(n-2k),k соответственно.
  • Оцениваются отдельные регрессии для первой подвыборки (k первых наблюдений) и для третьей подвыборки (k последних наблюдений). Для парной регрессии Голдфелд и Квандт предлагают следующие пропорции: n=30,k=11; n=60,k=22. Если предположение о пропорциональности дисперсий отклонений значениям X верно, то дисперсия регрессии по первой подвыборке (рассчитываемая как ) будет существенно меньше дисперсии регрессии по третьей подвыборке (рассчитываемой как ). 
  • Для сравнения соответствующих дисперсий строится соответствующая F-статистика:

    Здесь (k – m - 1)– число степеней свободы соответствующих выборочных дисперсий (m – количество объясняющих переменных в уравнении регрессии).
    Построенная F-статистика имеет распределение Фишера с числом степеней свободы v1 = v2 = n – m - 1.
  • Если   (где Fкр = Fα,v1,v2, определяется из таблиц, α– выбранный уровень значимости), то гипотеза об отсутствии гетероскедастичности отклоняется.
    Этот же тест может использоваться при предположении об обратной пропорциональности между σi и значениями объясняющей переменной. При этом статистика Фишера имеет вид:

Для множественной регрессии данный тест обычно проводится для той объясняющей переменной, которая в наибольшей степени связана с σi. При этом k должно быть больше, чем (m+1). Если нет уверенности относительно выбора переменной Xj, то данный тест может осуществляться для каждой из объясняющих переменных.

Пример. 1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК:
a0n + a1∑x = ∑y
a0∑x + a1∑x2 = ∑y•x
Для наших данных система уравнений имеет вид:
14a0 + 520.3a1 = 178.1
520.3a0 + 19991.23a1 = 6651.61
Из первого уравнения выражаем а0 и подставим во второе уравнение
Получаем a0 = 0.0499, a1 = 10.87

x y x2 y2 x • y y(x) (y-y(x))2
25.5 14.5 650.25 210.25 369.75 12.14 5.57
26.5 11.3 702.25 127.69 299.45 12.19 0.79
27.2 14.7 739.84 216.09 399.84 12.22 6.13
29.6 10.2 876.16 104.04 301.92 12.34 4.6
35.7 13.5 1274.49 182.25 481.95 12.65 0.73
38.6 9.9 1489.96 98.01 382.14 12.79 8.37
39 12.4 1521 153.76 483.6 12.81 0.17
39.3 8.6 1544.49 73.96 337.98 12.83 17.88
40 10.3 1600 106.09 412 12.86 6.57
41.9 13.9 1755.61 193.21 582.41 12.96 0.89
42.5 14.9 1806.25 222.01 633.25 12.99 3.66
44.2 11.6 1953.64 134.56 512.72 13.07 2.17
44.8 21.5 2007.04 462.25 963.2 13.1 70.52
45.5 10.8 2070.25 116.64 491.4 13.14 5.46
520.3 178.1 19991.23 2400.81 6651.61 178.1 133.49


Здесь S1 = 133.49

2. Оценим регрессию для третьей подвыборки. Система уравнений МНК:
a0n + a1∑x = ∑y
a0∑x + a1∑x2 = ∑y•x
Для наших данных система уравнений имеет вид:
14a0 + 1146.6a1 = 288.8
1146.6a0 + 94248.54a1 = 23640.18
Из первого уравнения выражаем а0 и подставим во второе уравнение
Получаем a0 = -0.0367, a1 = 23.63

x y x2 y2 x • y y(x) (y-y(x))2
73.8 14.3 5446.44 204.49 1055.34 20.93 43.9
74.7 21.8 5580.09 475.24 1628.46 20.89 0.82
75.8 26.1 5745.64 681.21 1978.38 20.85 27.54
76.9 20 5913.61 400 1538 20.81 0.66
79.2 19.8 6272.64 392.04 1568.16 20.73 0.86
81.5 21.2 6642.25 449.44 1727.8 20.64 0.31
82.4 29 6789.76 841 2389.6 20.61 70.39
82.8 17.3 6855.84 299.29 1432.44 20.6 10.86
83 23.5 6889 552.25 1950.5 20.59 8.48
85.9 22 7378.81 484 1889.8 20.48 2.3
86.4 18.3 7464.96 334.89 1581.12 20.46 4.68
86.9 13.7 7551.61 187.69 1190.53 20.45 45.5
88.3 14.5 7796.89 210.25 1280.35 20.39 34.74
89 27.3 7921 745.29 2429.7 20.37 48.05
1146.6 288.8 94248.54 6257.08 23640.18 288.8 299.09


Здесь S3 = 299.09
Fkp(1,38) = 4.08
Строим F-статистику:
F = 299.09/133.49 = 2.24
Поскольку F < Fkp = 4.08, то гипотеза об отсутствии гетероскедастичности принимается.
загрузка...