Расчет параметров уравнения тренда

Назначение сервиса. Сервис используется для расчета параметров тренда временного ряда yt онлайн с помощью метода наименьших квадратов (МНК) (см. пример нахождения уравнения тренда), а также способом от условного нуля. Для этого строится система уравнений:
a0n + a1∑t = ∑y
a0∑t + a1∑t2 = ∑y•t

и таблица следующего вида:

t y t 2 y 2 t•y y(t)
1
... ... ... ... ... ...
N
ИТОГО
Инструкция. Укажите количество данных (количество строк). Полученное решение сохраняется в файле Word и Excel.
Количество строк (исходных данных)
Использовать способ отсчета времени от условного начала (перенос начала координат в середину ряда динамики)

Тенденция временного ряда характеризует совокупность факторов, оказывающих долговременное влияние и формирующих общую динамику изучаемого показателя.

Способ отсчета времени от условного начала

Для определения параметров математической функции при анализе тренда в рядах динамики используется способ отсчета времени от условного начала. Он основан на обозначении в ряду динамики показаний времени таким образом, чтобы ∑ti. При этом в ряду динамики с нечетным числом уровней порядковый номер уровня, находящегося в середине ряда, обозначают через нулевое значение и принимают его за условное начало отсчета времени с интервалом +1 всех последующих уровней и –1 всех предыдущих уровней. Например, при обозначения времени будут: –2, –1, 0, +1, +2. При четном числе уровней порядковые номера верхней половины ряда (от середины) обозначаются числами: –1, –3, –5, а нижней половины ряда обозначаются +1, +3, +5.

Пример. Статистическое изучение динамики численности населения.

  1. С помощью цепных, базисных, средних показателей динамики оцените изменение численности, запишите выводы.
  2. С помощью метода аналитического выравнивания (по прямой и параболе, определив коэффициенты с помощью МНК) выявите основную тенденцию в развитии явления (численность населения Республики Коми). Оцените качество полученных моделей с помощью ошибок и коэффициентов аппроксимации.
  3. Определите коэффициенты линейного и параболического трендов с помощью средств «Мастера диаграмм». Дайте точечный и интервальный прогнозы численности на 2010 г. Запишите выводы.
1990 1996 2001 2002 2003 2004 2005 2006 2007 2008
1249 1133 1043 1030 1016 1005 996 985 975 968

Метод аналитического выравнивания
а) Линейное уравнение тренда имеет вид y = bt + a
1. Находим параметры уравнения методом наименьших квадратов. Используем способ отсчета времени от условного начала.
Система уравнений МНК для линейного тренда имеет вид:
a0n + a1∑t = ∑y
a0∑t + a1∑t2 = ∑y•t

t y t2 y2 t y
-9 1249 81 1560001 -11241
-7 1133 49 1283689 -7931
-5 1043 25 1087849 -5215
-3 1030 9 1060900 -3090
-1 1016 1 1032256 -1016
1 1005 1 1010025 1005
3 996 9 992016 2988
5 985 25 970225 4925
7 975 49 950625 6825
9 968 81 937024 8712
0 10400 330 10884610 -4038

Для наших данных система уравнений примет вид:
10a0 + 0a1 = 10400
0a0 + 330a1 = -4038
Из первого уравнения выражаем а0 и подставим во второе уравнение
Получаем a0 = -12.236, a1 = 1040
Уравнение тренда:
y = -12.236 t + 1040

Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

б) выравнивание по параболе
Уравнение тренда имеет вид y = at2 + bt + c
1. Находим параметры уравнения методом наименьших квадратов.
Система уравнений МНК:
a0n + a1∑t + a2∑t2 = ∑y
a0∑t + a1∑t2 + a2∑t3 = ∑yt
a0∑t2 + a1∑t3 + a2∑t4 = ∑yt2

t y t2 y2 t y t3 t4 t2 y
-9 1249 81 1560001 -11241 -729 6561 101169
-7 1133 49 1283689 -7931 -343 2401 55517
-5 1043 25 1087849 -5215 -125 625 26075
-3 1030 9 1060900 -3090 -27 81 9270
-1 1016 1 1032256 -1016 -1 1 1016
1 1005 1 1010025 1005 1 1 1005
3 996 9 992016 2988 27 81 8964
5 985 25 970225 4925 125 625 24625
7 975 49 950625 6825 343 2401 47775
9 968 81 937024 8712 729 6561 78408
0 10400 330 10884610 -4038 0 19338 353824

Для наших данных система уравнений имеет вид
10a0 + 0a1 + 330a2 = 10400
0a0 + 330a1 + 0a2 = -4038
330a0 + 0a1 + 19338a2 = 353824
Получаем a0 = 1.258, a1 = -12.236, a2 = 998.5
Уравнение тренда:
y = 1.258t2-12.236t+998.5

Ошибка аппроксимации для параболического уравнения тренда.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.

Минимальная ошибка аппроксимации при выравнивании по параболе. К тому же коэффициент детерминации R2 выше чем при линейной. Следовательно, для прогнозирования необходимо использовать уравнение по параболе.

Интервальный прогноз.
Определим среднеквадратическую ошибку прогнозируемого показателя.

m = 1 - количество влияющих факторов в уравнении тренда.
Uy = yn+L ± K
где

L - период упреждения; уn+L - точечный прогноз по модели на (n + L)-й момент времени; n - количество наблюдений во временном ряду; Sy - стандартная ошибка прогнозируемого показателя; Tтабл - табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2.
По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (8;0.025) = 2.306
Точечный прогноз, t = 10: y(10) = 1.26*102 -12.24*10 + 998.5 = 1001.89 тыс. чел.

1001.89 - 71.13 = 930.76 ; 1001.89 + 71.13 = 1073.02
Интервальный прогноз:
t = 9+1 = 10: (930.76;1073.02)

загрузка...