Группировка данных: получение вариационного ряда с равными интервалами

Уравнение регрессии

Назначение сервиса. С помощью сервиса в онлайн режиме можно найти:
  • уравнение регрессии y=a+bx;
  • линейный коэффициент корреляции с проверкой его значимости;
  • параметры уравнения линейной регрессии;
  • тесноту связи с помощью показателей корреляции и детерминации;
  • статическую надежность регрессионного моделирования с помощью F-критерия Фишера и с помощью t-критерия Стьюдента;
  • доверительный интервал прогноза для уровня значимости α;
Кроме этого, проверяется наличие гетероскедастичности и автокорреляции остатков.

Инструкция. Укажите количество исходных данных. Полученное решение сохраняется в файле Word (см. Пример нахождения уравнения регрессии). Также автоматически создается шаблон решения в Excel. Подробнее.

Количество строк (исходных данных)

В сервисе для нахождения параметров регрессии используется МНК. Система нормальных уравнений для линейной регрессии: Система нормальных уравнений для линейной регрессии. Также можно получить ответ, используя матричный метод. см. также Статистические функции в Excel

Уравнение парной регрессии относится к уравнению регрессии первого порядка. Уравнение регрессии второго порядка и уравнение регрессии третьего порядка относятся к нелинейным уравнениям регрессии.

Пример. Осуществите выбор зависимой (объясняемой) и объясняющей переменной для построения парной регрессионной модели. Дайте графическое изображение регрессионной зависимости. Определите теоретическое уравнение парной регрессии. Оцените адекватность построенной модели (интерпретируйте R-квадрат, показатели t-статистики, F-статистики).
Решение будем проводить на основе процесса эконометрического моделирования.
1-й этап (постановочный) – определение конечных целей моделирования, набора участвующих в модели факторов и показателей, их роли.
Ситуационная (практическая) задача. По 10 предприятиям региона изучается зависимость выработки продукции на одного работника y (тыс. руб.) от удельного веса рабочих высокой квалификации в общей численности рабочих x (в %).
2-й этап (априорный) – предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез.
Уже на этом этапе можно говорить о явной зависимости уровня квалификации рабочего и его выработкой, ведь чем опытней работник, тем выше его производительность. Но как эту зависимость оценить?
Парная регрессия представляет собой регрессию между двумя переменными – y и x, т. е. модель вида:

y(x) = f^(x),
где y – зависимая переменная (результативный признак); x – независимая, или объясняющая, переменная (признак-фактор). Знак «^» означает, что между переменными x и y нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина y складывается из двух слагаемых:
y = yx + ε,
где y – фактическое значение результативного признака; yx – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; ε – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.
Графически покажем регрессионную зависимость между выработкой продукции на одного работника и удельного веса рабочих высокой квалификации.
графическое изображение регрессионной зависимости

3-й этап (параметризация) – собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными. Выбираем уравнение парной регрессии, т.е. на конечный результат y будет влиять только один фактор.
4-й этап (информационный) – сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показателей. Выборка состоит из 10 предприятий отрасли.
5-й этап (идентификация модели) – оценивание неизвестных параметров модели по имеющимся статистическим данным.
Чтобы определить параметры модели, используем МНК - метод наименьших квадратов. Система нормальных уравнений будет выглядеть следующим образом:
a•n + b∑x = ∑y
a∑x + b∑x2 = ∑y•x
Для расчета параметров регрессии построим расчетную таблицу (табл. 1).
x y x2 y2 x • y
10 6 100 36 60
12 6 144 36 72
15 7 225 49 105
17 7 289 49 119
18 7 324 49 126
19 8 361 64 152
19 8 361 64 152
20 9 400 81 180
20 9 400 81 180
21 10 441 100 210
171 77 3045 609 1356

Данные берем из таблицы 1 (последняя строка), в итоге имеем:
10a + 171 b = 77
171 a + 3045 b = 1356
Эту СЛАУ решаем методом Крамера или методом обратной матрицы.
Получаем эмпирические коэффициенты регрессии: b = 0.3251, a = 2.1414
Эмпирическое уравнение регрессии имеет вид:
y = 0.3251 x + 2.1414
6-й этап (верификация модели) – сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.
Анализ проводим с помощью проверки адекватности модели и с помощью статистической значимости параметров парной регрессии.
Новое на сайте