Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона

Критерий согласия Пирсона: критерий согласия Пирсона

Пример 1. Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.

Решение находим с помощью калькулятора.
Таблица для расчета показателей.

xi Кол-во, fi xi * fi Накопленная частота, S (x - xср) * f (x - xср)2 * f (x - xср)3 * f Частота, fi/n
5 15 75 15 114.45 873.25 -6662.92 0.075
7 26 182 41 146.38 824.12 -4639.79 0.13
9 25 225 66 90.75 329.42 -1195.8 0.13
11 30 330 96 48.9 79.71 -129.92 0.15
13 26 338 122 9.62 3.56 1.32 0.13
15 21 315 143 49.77 117.95 279.55 0.11
17 24 408 167 104.88 458.33 2002.88 0.12
19 20 380 187 127.4 811.54 5169.5 0.1
21 13 273 200 108.81 910.74 7622.89 0.065
200 2526 800.96 4408.62 2447.7 1


Показатели центра распределения.
Средняя взвешенная


Показатели вариации.
Абсолютные показатели вариации.
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 21 - 5 = 16
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 12.63 не более, чем на 4.7
Оценка среднеквадратического отклонения.

Проверка гипотез о виде распределения.
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где n*i - теоретические частоты:

Вычислим теоретические частоты, учитывая, что:
n = 200, h=2 (ширина интервала), σ = 4.7, xср = 12.63


i xi ui φi n*i
1 5 -1.63 0,1057 9.01
2 7 -1.2 0,1942 16.55
3 9 -0.77 0,2943 25.07
4 11 -0.35 0,3752 31.97
5 13 0.0788 0,3977 33.88
6 15 0.5 0,3503 29.84
7 17 0.93 0,2565 21.85
8 19 1.36 0,1582 13.48
9 21 1.78 0,0804 6.85


Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия:


i ni n*i ni-n*i (ni-n*i)2 (ni-n*i)2/n*i
1 15 9.01 -5.99 35.94 3.99
2 26 16.55 -9.45 89.39 5.4
3 25 25.07 0.0734 0.00539 0.000215
4 30 31.97 1.97 3.86 0.12
5 26 33.88 7.88 62.14 1.83
6 21 29.84 8.84 78.22 2.62
7 24 21.85 -2.15 4.61 0.21
8 20 13.48 -6.52 42.53 3.16
9 13 6.85 -6.15 37.82 5.52
200 200 22.86


Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям σ, k = 9, r=2 (параметры xcp и σ оценены по выборке).
Kkp(0.05;6) = 12.59159; Kнабл = 22.86
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены не по нормальному закону. Другими словами, эмпирические и теоретические частоты различаются значимо.

Пример 2. Используя критерий Пирсона, при уровне значимости 0.05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.
Решение.
Таблица для расчета показателей.

xi Кол-во, fi xi * fi Накопленная частота, S (x - xср) * f (x - xср)2 * f (x - xср)3 * f Частота, fi/n
0.3 6 1.8 6 5.77 5.55 -5.34 0.03
0.5 9 4.5 15 6.86 5.23 -3.98 0.045
0.7 26 18.2 41 14.61 8.21 -4.62 0.13
0.9 25 22.5 66 9.05 3.28 -1.19 0.13
1.1 30 33 96 4.86 0.79 -0.13 0.15
1.3 26 33.8 122 0.99 0.0375 0.00143 0.13
1.5 21 31.5 143 5 1.19 0.28 0.11
1.7 24 40.8 167 10.51 4.6 2.02 0.12
1.9 20 38 187 12.76 8.14 5.19 0.1
2.1 8 16.8 195 6.7 5.62 4.71 0.04
2.3 5 11.5 200 5.19 5.39 5.59 0.025
200 252.4 82.3 48.03 2.54 1


Показатели центра распределения.
Средняя взвешенная


Показатели вариации.
Абсолютные показатели вариации.
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 2.3 - 0.3 = 2
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 1.26 не более, чем на 0.49
Оценка среднеквадратического отклонения.

Проверка гипотез о виде распределения.
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где n*i - теоретические частоты:

Вычислим теоретические частоты, учитывая, что:
n = 200, h=0.2 (ширина интервала), σ = 0.49, xср = 1.26


i xi ui φi n*i
1 0.3 -1.96 0,0573 4.68
2 0.5 -1.55 0,1182 9.65
3 0.7 -1.15 0,2059 16.81
4 0.9 -0.74 0,3034 24.76
5 1.1 -0.33 0,3765 30.73
6 1.3 0.0775 0,3977 32.46
7 1.5 0.49 0,3538 28.88
8 1.7 0.89 0,2661 21.72
9 1.9 1.3 0,1691 13.8
10 2.1 1.71 0,0909 7.42
11 2.3 2.12 0,0422 3.44


Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия:


i ni n*i ni-n*i (ni-n*i)2 (ni-n*i)2/n*i
1 6 4.68 -1.32 1.75 0.37
2 9 9.65 0.65 0.42 0.0435
3 26 16.81 -9.19 84.53 5.03
4 25 24.76 -0.24 0.0555 0.00224
5 30 30.73 0.73 0.53 0.0174
6 26 32.46 6.46 41.75 1.29
7 21 28.88 7.88 62.07 2.15
8 24 21.72 -2.28 5.2 0.24
9 20 13.8 -6.2 38.41 2.78
10 8 7.42 -0.58 0.34 0.0454
11 5 3.44 -1.56 2.42 0.7
200 200 12.67


Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям σ, k = 11, r=2 (параметры xcp и σ оценены по выборке).
Kkp(0.05;8) = 15.50731; Kнабл = 12.67
Наблюдаемое значение статистики Пирсона не попадает в критическую область: Кнабл < Kkp, поэтому нет оснований отвергать основную гипотезу. Справедливо предположение о том, что данные выборки имеют нормальное распределение.
загрузка...