Интегрирование по частям

Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
С помощью данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.


dx

Пример №1. Вычислить xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому xexdx=xex-exdx=xex-ex+C.

Пример №2. Вычислить xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и xcos(x)dx=xsin(x) - sin(x)dx = xsin(x)+cos(x)+C

При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда и Вряд ли интеграл x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла x2sin(x)dx.

В интегралах Pn(x)cos(ax)dx, Pn(x)sin(ax)dx, Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n, обычно полагают U(x)=Pn(x), dV(x)=cos(ax)dx.
Интегралы eaxcos(bx)dx и eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.

Также рекомендуется изучить сервис вычисление интегралов онлайн

Пример №3. (3x+4)cos(x)dx
Решение:

Ответ: (3x+4)sin(x)+3cos(x)+C

загрузка...