Коэффициент корреляции знаков


Коэффициент корреляции знаков основан на оценке степени согласованности направлений отклонений индивидуальных значений факторного и результативного признаков от соответствующих средних. Вычисляется он следующим образом:

где na - число совпадений знаков отклонений индивидуальных величин от средней; nb - число несовпадений.
Коэффициент Фехнера может принимать значения от –1 до +1. Kф = 1 свидетельствует о возможном наличии прямой связи, Kф = -1 свидетельствует о возможном наличии обратной связи.
Рассмотрим на примере расчет коэффициента корреляции знаков по данным, приведенным в таблице:
Средние значения:

Xi Yi Знаки отклонений от средней X Знаки отклонений от средней Y Совпадение (а) или несовпадение (b) знаков
96 220 + - B
52 1070 - + B
60 1000 - + B
89 606 + - B
82 780 + + A
77 790 - + B
70 900 - + B
92 544 + - B
618 5910 0 0 0


Значение коэффициента свидетельствует о том, что можно предполагать наличие обратной связи.

Оценка Коэффициента корреляции знаков.
Значимость коэффициента корреляции знаков.

По таблице Стьюдента находим tтабл:
tтабл (n-m-1;a) = (6;0.05) = 1.943
Поскольку Tнабл > tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции знаков. Другими словами, коэффициент корреляции знаков статистически - значим.

Доверительный интервал для коэффициента корреляции знаков.

Доверительный интервал для коэффициента корреляции знаков.
r(-1.0505;-0.4495)

загрузка...