Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Примеры решений Метод Гомори Графический метод Теория игр Симплекс-метод M-задача Теоремы двойственности Одноканальные СМО Задача коммивояжера Транспортная задача

Глоссарий

Автономная модель – часть системы моделей, которую можно анализировать независимо от других частей. Этот подход применим всюду, где отдельные хозяйственные звенья обладают самостоятельностью в своих действиях. Однако в экономике все связано, поэтому автономность частичных моделей всегда относительна.
Агрегирование – объединение, укрупнение показателей по какому-либо признаку. С математической точки зрения агрегирование рассматривается как преобразование модели в модель с меньшим числом переменных и ограничений (агрегированную модель), дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта.
Адаптация – приспособление системы к реальным условиям. Различают адаптацию пассивную – реагирование системы на изменение среды и активную – воздействие системы на среду.
Адекватность модели – соответствие модели моделируемому объекту или процессу.
Алгоритм – формализованная последовательность действий по решению задачи.
Антагонистические игры – игры, в которых интересы игроков строго противоположны, т. е. выигрыш одного игрока – проигрыш другого.
Базисное решение – допустимое решение задачи линейного программирования, находящееся в вершине области допустимых решений.
Вероятность – численная мера возможности события.
Геометрическая интерпретация задачи линейного программирования – интерпретация зависимостей, имеющих место в задаче линейного программирования в виде геометрических фигур (точек, прямых, полуплоскостей, многоугольников) в декартовой системе координат.
Двойственные оценки определяют дефицитность используемых ресурсов и показывают, насколько возрастает максимальное значение целевой функции прямой задачи при увеличении количества соответствующего ресурса на единицу.
Детерминированные величины – исходные данные, заданные определенными величинами.
Динамические модели экономики – модели, описывающие экономику в развитии (в отличие от статических, характеризующих ее состояние в определенный момент).
Динамическое программирование – методы решения задач, в которых процесс нахождения решения является многоэтапным.
Дисперсия характеризует разброс значений случайной величины.
Допустимый план – решение, удовлетворяющее системе ограничений, но не обязательно оптимальное.
Достоверное событие – событие, которое непременно должно произойти.
Задача оптимизации – задача, решение которой сводится к нахождению максимума или минимума целевой функции.
Игра – формализованная модель конфликтной ситуации.
Игра n лиц с постоянной суммой – игры, в которых принимает участие n игроков, существует n множеств стратегий и n действительных платежных функций от n переменных, каждая из которых является элементом соответствующего множества стратегий. Каждый игрок знает всю структуру игры и в своем поведении неизменно руководствуется желанием получить максимальный средний выигрыш.
Игра двух лиц с ненулевой суммой – игры, в которых сумма выигрышей двух игроков после каждой партии не равна нулю.
Игра двух лиц с нулевой суммой – игры, в которых интересы двух игроков строго противоположны, т.е. выигрыш одного есть проигрыш другого.
Игра против природы – игры, где одним из определяющих факторов является внешняя среда или природа, которая может находиться в одном из состояний, которые неизвестны лицу, принимающему решение.
Игра с нулевой суммой – игры, в которых сумма выигрыша игроков после каждой партии составляет ноль.
Игрок – участник игровой модели.
Коалиции игроков – объединение m игроков в игре n лиц (m меньше n) с целью получения максимального выигрыша и выработке соответствующих стратегий.
Коэффициенты линейных ограничений – нормы расхода ресурсов.
Линейное программирование – методы решения задач математического программирования, в которых ограничения и целевая функция линейны.
Линейно-независимые уравнения – уравнения, которые не могут быть получены умножением, делением, сложением, вычитанием исходных уравнений.
Линейные зависимости – зависимости, в которые переменные входят в первой степени, и в которых нет их произведения.
Математическое ожидание характеризует среднее значение случайной величины.
Модель – математическое или логическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса (обычно рассматриваемых как системы или элементы системы).
Ограничение – неравенства, устанавливающие зависимости для ресурсов.
Оптимальное решение – вариант, для которого принятый критерий принимает наилучшее решение.
Парная игра – игровая модель с двумя участниками.
Переменная – величина, принимающая различные значения.
Платежная матрица – прямоугольная таблица размерности m на n, i=1,...,n j=1,...,m (i,j)-ый элемент которой есть значение выигрыша (проигрыша) игроков в случае i-го хода первого игрока и j-го хода второго игрока.
Равновесие (экономической системы) – 1) состояние, которое характеризуется равенством спроса и предложения всех ресурсов; 2) состояние, когда ни один из многих взаимосвязанных участников системы не заинтересован в изменении этого состояния, так как при этом он не может ничего выиграть, но может проиграть.
Симплекс-метод – метод решения задач линейного программирования, заключающийся в последовательном улучшении плана и позволяющий осуществлять переход от одного допустимого базисного решения к другому таким образом, что значение целевой функции непрерывно возрастают и за конечное число шагов находится оптимальное решение.
Случайная величина – данные, которые зависят от ряда случайных факторов.
Случайный ход – результат, получаемый не решением игрока, а каким-либо механизмом случайного выбора (покупательский спрос, задержка с поставкой материалов и т.п.).
Событие – всякий факт, который в результате опыта может произойти или не произойти.
Сознательный ход – выбор игроком одного из возможных вариантов действия (стратегия) и принятие решения о его осуществлении.
Среднеквадратическое отклонение характеризует разброс значений случайной величины от ее среднего значения.
Стационарность – постоянство во времени характеристик некоторого процесса.
Стратегия – правило действий в каждой ситуации процесса принятия решения.
Теория игр занимается методами обоснования решений в условиях неопределенности и риска, вырабатывает рекомендации для различного поведения игроков в конфликтной ситуации.
Целевая функция – критерий оптимизации, признак, характеризующий качество принимаемого решения (максимум прибыли, минимум затрат).
Транспортная задача
Используя метод минимального тарифа, представить первоначальный план для решения транспортной задачи. Проверить на оптимальность, используя метод потенциалов. Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов
1234b
112436
243858
3276310
a4688 
Решить онлайн
Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Нелинейное программирование
Метод Лагранжа
Метод множителей Лагранжа
Решить онлайн
Курсовые на заказ