Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Примеры решений Метод Гомори Графический метод Теория игр Симплекс-метод M-задача Теоремы двойственности Одноканальные СМО Задача коммивояжера Транспортная задача

Онлайн-калькуляторы по линейному программированию

В этом разделе представлены онлайн-калькуляторы по линейному программированию. Линейное программирование представляет собой раздел математики, занимающийся изучением оптимальных задач, характеризующихся линейной зависимостью между переменными и разработкой методов их решения.
  1. Графический метод решения задач линейного программирования. 1) построение области D (ОДЗ); 2) нахождение gradF и его построение; 3) нахождение экстремума функции по первой и последней точкам области D.
  2. Симплекс-метод - метод последовательного улучшения плана, позволяющий за конкретное число шагов получить оптимальный план решения задач по ЛП и по соответствующим оценкам функции.
  3. Задача о смесях
  4. Задача линейного программирования сводится к приведению к канонической форме, а затем к стандартной форме ЗЛП
  5. Двойственный симплекс-метод (P-метод)
  6. Составление и решение двойственной задачи
  7. Метод Гомори.
  8. Задачи параметрического программирования
  9. Дробно-линейное программирование

Система линейных неравенств, определяющая допустимое множество решения задачи, называется системой ограничений задачи линейного программирования, а линейная функция f(x) называется целевой функцией или критерием оптимальности. При этом запись вида f(x)→extrm означает, что необходимо найти и минимальное, и максимальное значение функции.

Как решать симплексным методом

В заданиях, требующих решения симплексным методом, присутствуют система ограничений с n неизвестными Xn и целевая функция F(x). В сервисе необходимо сначала задать количество неизвестных n и количество ограничений. Например,
0.1x1+0.2x2+0.4x3≤1100
0.05x1+0.02x2+0.02x3≤120

Здесь количество неизвестных n = 3, количество строк k = 2.

Предварительно ЗЛП можно привести к канонической форме с помощью данного калькулятора, а затем к СЗЛП.

Далее необходимо выбрать форму решения симплексного метода. От этого будет зависеть не только оформление задачи, но и способ перерасчета симплекс-преобразований. Обычно в заданиях требуют решить:

  1. симплекс-методом. Выбирается любая форма записи.
  2. M-методом. Выбирается Симплекс-таблица.
  3. двухфазным или двухэтапным симплекс-методом. Выбираются любые из следующих форм записи: модифицированный симплексный метод, столбцовая форма, в строчечной форме или базовый симплекс-метод (по умолчанию).
  4. модифицированным симплекс-методом (или симплексным методом в матричной форме). Используется основной онлайн-калькулятор Симплекс-метод.
  5. P-методом (или двойственным симплекс-методом). Это задача на поиск минимума целевой функции F(x) = min. Решается только P-методом.
  6. Метод Гомори. Используется для поиска целочисленного решения.
  7. двойственную задачу. Для этого воспользуйтесь сервисом Двойственная задача.

Для пунктов 1,2,3,4 используется основной тип калькулятора Симплекс-метод.

Целевая функция имеет два значения: min (минимум) и max (максимум). Минимум целевой функции можно найти двумя способами:

Отметьте пункт Использовать дроби, если необходимо все вычисления записывать в виде дробей. Если исходные данные заданы с десятичной точкой, то все решение ведется без дробей.

Схема решения симплексным методом

В каждом сервисе рекомендуется сразу проверять решение в Excel (см. ссылку для скачивания шаблона после решения).

см. также Базисные решения системы линейных уравнений методом Жордана-Гаусса.
Двойственный симплекс метод в Excel.

Пошагово изучить особенности жордановских преобразований можно с помощью сервиса Правило прямоугольника.

Транспортные задачи ЛП

Многокритериальная оптимизация

  1. Метод идеальной точки.
  2. Метод последовательных уступок.

Список литературы

  1. Балдин К.В., Рукосцев А.В., Башлыков В.Н.Математические методы и модели в экономике: учебник. М.: Изд-во «Флита»; НОУ ВПО «МПСИ», 2012. 328 с. ЭБС «КнигаФонд».
  2. Васильев Ф.П. Методы оптимизации: В 2-х кн. — Новое изд., перераб. и доп. М.: МЦНМО, 2011. - 620 с. ЭБС «КнигаФонд».
  3. Гусева Е.Н. Экономико-математическое моделирование: учебное пособие. М.: Изд-во «Флинта», МПСИ, 2011. —216 с. ЭБС «КнигаФонд».
  4. Колемаев В.А. Математическая экономика: Учебник для вузов. М.: Изд-во: «ЮНИТИ-ДАНА», 2012. — 400 с. ЭБС «КнигаФонд».
  5. Спешилова Н.В., Шеврина Е.В., Корабейникова О.А. Экономико-математические модели и их практическое применение в АПК: учебное пособие. – 4-е изд., перераб. и доп. Оренбург: Издательский центр ОГАУ, 2012. 132 с.
  6. Федосеев В.В. Математическое моделирование в экономике и социологии труда. Методы, модели, задачи: учебное пособие. М.: Изд-во:
  7. Экономико-математические методы и прикладные модели: Учебное пособие/ Под ред. Федосеева В.В. М.: Изд-во «ЮНИТИ-ДАНА», 2012. 302 с. ЭБС «КнигаФонд».
Транспортная задача
Используя метод минимального тарифа, представить первоначальный план для решения транспортной задачи. Проверить на оптимальность, используя метод потенциалов. Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов
1234b
112436
243858
3276310
a4688 
Решить онлайн
Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Нелинейное программирование
Метод Лагранжа
Метод множителей Лагранжа
Решить онлайн
Курсовые на заказ