Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Найти производную Найти интеграл Пределы онлайн
Экстремумы функции Интервалы возрастания функции Точки перегиба
Диф уравнения онлайн Асимптоты функции Точки разрыва функции

Построение графика функции методом дифференциального исчисления

Существует способ построения графика функции, основанный на аналитическом исследовании функции. Исследование проводится по следующей примерной схеме:
1) выяснение области определения функции;
2) решается вопрос о четности или нечетности функции;
3) исследуется периодичность функции;
4) находят точки пересечения кривой с осями координат;
5) находят точки разрыва функции и определяют их характер;
6) проводят исследования на экстремум, находят экстремальные значения функции;
7) ищутся точки перегиба и интервалы выпуклости и вогнутости кривой;
8) отыскание асимптот кривой;
9) полученные результаты наносят на чертеж и получают график исследуемой функции.
y =

Правила ввода функции

Примеры
x^2/(x+2)
cos2(2x+π)(cos(2*x+pi))^2
x+(x-1)^(2/3)

Пример №1. Провести полное исследование функции Провести полное исследование функции и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая  – вертикальная асимптота.

6) Находим  и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.

Найти первую производную функции

Для проверки правильности нахождения минимального и максимального значения.

7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).

Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты  установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
Алгоритм исследования построения графика функции

Построить график функции

Пример №2. Построить график функции .
Решение.
1. Область определения функции D(y) = (-∞;0)U(0;∞).
2. Функция не является четной или нечетной.
3. Найдем точки пересечения графика с осью ОХ; имеем
; .
4. Точки разрыва x=0, причем ; следовательно, x=0 является вертикальной асимптотой графика.
Найдем наклонные асимптоты:
;
.
Наклонная асимптота имеет уравнение y=x.
5. Найдем экстремум функции и интервалы возрастания и убывания. Имеем . Существует единственная критическая точка x=2. В промежутках x∈(-∞ ;0)∪(2; +∞) y'>0, следовательно, функция возрастает; в промежутке x∈(0;2) y'<0, функция убывает. Далее, находим ; y''(2)>0, следовательно, x=2 – точка минимума ymin=3.
6. Найдем интервалы выпуклости и вогнутости кривой и точки ее перегиба. Так как y’’>0 (x≠0), то график функции всюду вогнут. Точек перегиба кривая не имеет.
Строим график функции.