Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Калькуляторы по этой теме
Собраны наиболее популярные калькуляторы по дисциплине Высшая математика.
Подробнее
Примеры решений Производная онлайн Интегралы онлайн Уравнения Бернулли xydx + (x+1)dy = 0 y'' - 3y' + 2y = 0 (y')2+2yy'' = 0 Пределы онлайн Системы дифф уравнений Метод вариации постоянной

Решение дифференциальных уравнений

Уравнение, связывающее независимую переменную, искомую функцию и некоторое количество ее производных, т.е. уравнение вида
F(x,y,y') = 0
называется обыкновенным дифференциальным уравнением n-го порядка.
Например, решить дифференциальное уравнение онлайн: y''-2y+1=sinx. Записываем как y''-2*y+1=sin(x). Для отображение хода решения нажмите Show steps или Step-by-step.
Если определить тип дифференциального уравнения, то решение будет доступно в MS Word:

типа y'+2*y=4*x, x*y’-y=3*x^2-3, , , либо задача Коши.
типа 2xydx+x2dy=0, 2xydx=(x2-y2)dy или с разделяющимися переменными.
типа y'+2xy=2xy3, , xy’+2y+x5y3ex=0
типа y''+2*y-8=x, 2*y''-3*y-8=x*cos(x).
: x3y''+x2y'=1, (y')2+2yy''=0.
при y() = .

Способы решений дифференциальных уравнений

  1. Уравнения с разделяющимися переменными: y'=ex+y, xydx+(x+1)dy=0
  2. Однородные уравнения: (y2-2xy)dx+x2dy=0
  3. Постановка задачи о выделении решений.
  4. Калькулятор Линейные уравнения первого порядка: y'+2y=4x
  5. Уравнения Бернулли: y'+2xy=2xy3,
  6. Уравнения в полных дифференциалах: 2xydx+x2dy=0, 2xydx=(x2-y2)dy=0.
  7. Приближенные методы решения дифференциальных уравнений
  8. Уравнения высших порядков
  9. Системы дифференциальных уравнений:
    Однородные системы линейных дифференциальных уравнений с постоянными коэффициентами:
    Метод вариации произвольной постоянной

Пример. Найти частное решение дифференциального уравнения y'+xy=1, удовлетворяющего начальному условию y(0)=2.
Решение.
Данное дифференциальное уравнение – уравнение 1-го порядка, линейное относительно неизвестной функции y.
Применяя метод Бернулли для решения этого уравнения, сделаем замену y(x) = u(x)·v(x), где u(x) и v(x) – неизвестные функции, которые мы будем искать поочередно.
Согласно правилу дифференцирования произведения, имеем:
y′ = u′·v+u·v′.
Подставляя выражения для y и y' в исходное уравнение, получим:
u′·v+u·v′ + x·u·v = 1 (*)
Отсюда
u′·v + (u·v′ + x·u·v) = 1;
u′·v + u(v′ + x·v) = 1;
Выражение в скобках зависит только от v(x). Будем искать v(x), исходя из условия:
v′ + x·v = 0.
Рассматривая это равенство как дифференциальное уравнение, найдём частное решение для v(x) методом разделения переменных:
; ;
Переходим к интегралу:
; ; .
Подставим найденную функцию v(x) в уравнение (*):
; .
Найдём теперь общее решение для неизвестной функции u(x):
.
Окончательно, имеем общее решение исходного дифференциального уравнения:
.
Теперь, используем данное начальное условие и найдём частное решение уравнения:
y(0) = c·e0+1 = c+1 = 2
Отсюда c=1,
Ответ: частное решение дифференциального уравнения имеет вид: .