Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Производная онлайн Интегралы онлайн
График функции онлайн Точки разрыва функции Экстремумы функции
Первый замечательный предел Второй замечательный предел

Решение пределов

Число A называется пределом функции y=f(x) в точке x0, если для любой последовательности точек из области определения функции, отличных от x0, сходящейся к точке x0(lim xn = x0), последовательность соответствующих значений функции сходится к числу A.
lim
x→
Если выбрать вид предела, то подробное решение по шагам будет доступно в MS Word:
1.
2. (см. пример).
3. правило Лопиталя.
4.
5. первого замечательного предела ,
6. второго замечательного предела , ,
Для нахождения предела слева используйте знак -, справа: +. Например, 0-, 1+

Примечание: число "пи" (π) записывается как pi, знак как infinity
Некоторые виды записи пределов
sqrt(6-x)/(x^2-9)
sqrt(6-x)/(6+2*x)^(1/3)
log(1-tan(x),5)/sin(x*pi)
(x^2+2*x-2/3)/(x^3+x)
((3-3*x)/(4-3*x))^(2*x+1)
Например, найти предел запишем как x^3/exp(cos(x)). В качестве предела указываем infinity.
см. также нахождение пределов, используя свойства первого замечательного предела и второго замечательного предела.

Примеры.
Вычислить указанные пределы:

1. = .

2. =
3. . Так как числитель и знаменатель обратились в нуль при x=4, то 4 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-4). Получаем
.

4. .
5. = =

6. – не существует, так как -1<cos(x)<1.

7. . Обозначим , причем заметим, что при x→16, y→2. Получим:
.

8. . (Ответ получается непосредственно подстановкой (-∞) вместо x.)

9. . Здесь следует рассмотреть односторонние пределы:
; .
Следовательно, – не существует (так как у функции разные односторонние пределы).

Найти пределы функции, не применяя правило Лопиталя.
а) =
Ответ: 1/5

б)

=
Ответ: 1/6
в) = e-2/2 = e-1
Ответ: 1/e

г)
Так как числитель и знаменатель обратились в нуль при x=1, то 1 – корень обоих многочленов, а значит, каждый из них разлагается на множители, одним из которых будет (x-1).
Найдем корни первого многочлена: x2+2x-3=0
D=22-4•1•(-3)=16
,
Найдем корни второго многочлена: x2-1=(x-1)(x+1)
Получаем:

Ответ: 2

д)

Ответ: 1/10