Экстремум функции двух переменных
Назначение сервиса. Онлайн-калькулятор используется для нахождения в онлайн режиме наибольшего и наименьшего значения функции двух переменных (см. пример). Решение оформляется в формате Word. Для функции трех переменных можно использовать матрицу Гессе.Алгоритм исследования функции двух переменных на экстремум
Функция z = f(x,y) имеет максимум в точке M0(x0;y0), если f(x0;y0) > f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Функция z = f(x,y) имеет минимум в точке M0(x0;y0), если f(x0;y0) < f(x;y) для всех точек (x;y), достаточно близких к точке (x0;y0) и отличных от неё. Максимум и минимум функции называются экстремумами функции.Исследование функции двух переменных на экстремум проводят по следующей схеме.
1. Находят частные производные dz/dx и dz/dy.
2. Решают систему уравнений:
и таким образом находят критические точки функции.
3. Находят частные производные второго порядка:
4. Вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках M(x0;y0).
5. Делаю вывод о наличии экстремумов:
а) если AC – B2 > 0 и A < 0 , то в точке M имеется максимум;
б) если AC – B2 > 0 и A > 0 , то в точке M имеется минимум;
в) если AC – B2 < 0, то экстремума нет;
г) если AC – B2 = 0, то вопрос о наличии экстремума остается открытым;
Пример №1. Найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию Сильвестра их тип.
Решение.
1. Найдем первые частные производные.
2. Решим систему уравнений.
3x2+2x+y2=0
2xy+2y=0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = -1
y2+1=0
Данная система уравнений не имеет решения.
б) Из первого уравнения выражаем y и подставляем во второе уравнение:
или
или
Откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0
Данные значения x подставляем в выражение для y. Получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0
Количество критических точек равно 2: M1(-2/3;0), M2(0;0)
3. Найдем частные производные второго порядка.
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(-2/3;0)
AC - B2 = -4/3 < 0, то глобального экстремума нет.
Вычисляем значения для точки M2(0;0)
AC - B2 = 4 > 0 и A > 0 , то в точке M2(0;0) имеется минимум z(0;0) = 0
Вывод: В точке M2(0;0) имеется минимум z(0;0) = 0
Пример №2. Исследовать функцию на экстремум классическим методом: Z=8x2+2xy-5x+6
.