Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Найти производную Найти интеграл Пределы онлайн Экстремумы функции Интервалы возрастания функции Точки перегиба Диф уравнения онлайн Асимптоты функции Точки разрыва функции

Асимптоты кривой

Прямая линия называется асимптотой кривой y=f(x), если расстояние точки кривой до этой прямой стремится к нулю при стремлении точки к бесконечности.

Назначение сервиса. Данный сервис предназначен для нахождения асимптот к графику функции в онлайн режиме. Решение оформляется в формате Word.

Найти уравнение асимптот графика функции
y =

Правила ввода функции

Примеры
x^2/(x+2)
cos2(2x+π)(cos(2*x+pi))^2
x+(x-1)^(2/3)

Классификация асимптот

  1. Вертикальные асимптоты.
  2. Горизонтальные асимптоты.
  3. Наклонные асимптоты.

Вертикальные асимптоты

Уравнение любой вертикальной прямой, то есть прямой, параллельной оси OY, имеет вид x=a.
Вертикальные асимптоты
Если прямая x=a является вертикальной асимптотой графика функции y=f(x), то очевидно, что хотя бы один из односторонних пределов или равен бесконечности (+∞ или -∞).
Все функции с бесконечными разрывами (разрывы второго рода) имеют вертикальные асимптоты.

Пример 1. Найти уравнение вертикальных асимптот графика функции .
Решение. Видим, что y→∞, если x→1, точнее , , то есть прямая x=1 является вертикальной асимптотой, причем двусторонней.

Горизонтальные асимптоты

Горизонтальные асимптоты
Всякая горизонтальная прямая имеет уравнение y=A.
Если прямая y=A является горизонтальной асимптотой кривой y=f(x), то .

Пример 2. Найти горизонтальные асимптоты кривой .
Решение. Найдем , то есть y→0 при x→+∞ и при x→-∞, значит прямая y=0 – горизонтальная асимптота данной кривой.

Наклонные асимптоты

Уравнения наклонных асимптот обычно ищут в виде y=kx+b. По определению асимптоты или (1)
Разделим обе части этого равенства на x: , откуда
(2)
Теперь из (1):
(3)
Для существования наклонных асимптот необходимо существование пределов (2) и (3). Если хотя бы один из них не существует, то наклонных асимптот нет. Пределы (2) и (3) нужно находить отдельно при x→+∞ и при x→-∞, так как пределы могут быть разными (функция имеет две разные асимптоты).

Пример 4. Найти наклонные асимптоты графика функции .
Решение. По формуле (2) найдем .
Теперь найдем . Получаем уравнение наклонной асимптоты y=x+1.

Пример 5. Найти асимптоты кривой y=(x-1)2(x+3).
Решение. Вертикальных и горизонтальных асимптот нет, так как y→∞ при x→∞. Ищем наклонные:
.
Таким образом, кривая асимптот не имеет.

Пример 6. Найти асимптоты кривой .
Решение. Поскольку y→∞ при x→0 и при x→4, то прямые x=0 и x=4 являются вертикальными асимптотами. Так как , то y=2 – горизонтальная асимптота. Выясним вопрос о существовании наклонных асимптот: , следовательно, кривая наклонных асимптот не имеет (искать “b” не имеет смысла, так как горизонтальные асимптоты уже найдены).

Пример 7. Построить все виды асимптот к функции
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:

Находим коэффициент k:

Находим коэффициент b:

Получаем уравнение наклонной асимптоты: y = -x
Найдем вертикальные асимптоты. Для этого определим точки разрыва:


Находим переделы в точке


- является вертикальной асимптотой.
Находим переделы в точке


- является вертикальной асимптотой.

Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Курсовые на заказ