Асимптоты кривой
Прямая линия называется асимптотой кривой y=f(x), если расстояние точки кривой до этой прямой стремится к нулю при стремлении точки к бесконечности.Назначение сервиса. Данный сервис предназначен для нахождения асимптот к графику функции в онлайн режиме. Решение оформляется в формате Word.
Правила ввода функции

cos2(2x+π)
≡ (cos(2*x+pi))^2

Классификация асимптот
- Вертикальные асимптоты.
- Горизонтальные асимптоты.
- Наклонные асимптоты.
Вертикальные асимптоты
Уравнение любой вертикальной прямой, то есть прямой, параллельной оси OY, имеет вид x=a.


Все функции с бесконечными разрывами (разрывы второго рода) имеют вертикальные асимптоты.
Пример 1. Найти уравнение вертикальных асимптот графика функции .
Решение. Видим, что y→∞, если x→1, точнее ,
, то есть прямая x=1 является вертикальной асимптотой, причем двусторонней.
Горизонтальные асимптоты

Если прямая y=A является горизонтальной асимптотой кривой y=f(x), то

Пример 2. Найти горизонтальные асимптоты кривой .
Решение. Найдем , то есть y→0 при x→+∞ и при x→-∞, значит прямая y=0 – горизонтальная асимптота данной кривой.
Наклонные асимптоты
Уравнения наклонных асимптот обычно ищут в видеy=kx+b
. По определению асимптоты 

Разделим обе части этого равенства на x:


Теперь из (1):

Для существования наклонных асимптот необходимо существование пределов (2) и (3). Если хотя бы один из них не существует, то наклонных асимптот нет. Пределы (2) и (3) нужно находить отдельно при x→+∞ и при x→-∞, так как пределы могут быть разными (функция имеет две разные асимптоты).
Пример 4. Найти наклонные асимптоты графика функции .
Решение. По формуле (2) найдем .
Теперь найдем . Получаем уравнение наклонной асимптоты y=x+1.
Пример 5. Найти асимптоты кривой y=(x-1)2(x+3)
.
Решение. Вертикальных и горизонтальных асимптот нет, так как y→∞ при x→∞. Ищем наклонные:
.
Таким образом, кривая асимптот не имеет.
Пример 6. Найти асимптоты кривой .
Решение. Поскольку y→∞ при x→0 и при x→4, то прямые x=0 и x=4 являются вертикальными асимптотами. Так как , то y=2 – горизонтальная асимптота. Выясним вопрос о существовании наклонных асимптот:
, следовательно, кривая наклонных асимптот не имеет (искать “b” не имеет смысла, так как горизонтальные асимптоты уже найдены).
Пример 7. Построить все виды асимптот к функции
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:
Находим коэффициент k:
Находим коэффициент b:
Получаем уравнение наклонной асимптоты: y = -x
Найдем вертикальные асимптоты. Для этого определим точки разрыва:
Находим переделы в точке
- является вертикальной асимптотой.
Находим переделы в точке
- является вертикальной асимптотой.
