Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Найти производную Решение пределов онлайн Длина дуги кривой Геометрический смысл Несобственные интегралы Диф уравнения онлайн Вычисление объёмов Неопределенный интеграл

Вычисление интегралов

Множество всех первообразных функции f(x) (дифференциала f(x)dx) называется неопределенным интегралом от этой функции и обозначается f(x)dx.
С помощью данного онлайн-калькулятора можно вычислять интегралы. Например, найти интеграл x3sin(x2). Запишем как x^3*sin(x^2) и нажимаем кнопку Получить решение.
Если интеграл определенный, например, решение интеграла онлайн, то записываем 2/x^4+tan(x), в качестве пределов интегрирования указываем 1, 2. Первая строка служит для ввода числителя функции, вторая - для знаменателя.


dx

Примечание: число "пи" (π) записывается как pi; знак "бесконечность" (∞) ≡ infinity

Примеры правильной записи некоторых выражений

sqrt(6-x)
(6+2*x)^(1/3)
log5(1+x)log(1+x,5)
(2/3+x^2)/(x^3+x)
Таблица интегралов

Приемы нахождения неопределенных интегралов

Способы нахождения неопределенных интегралов:
  1. Подведение под знак дифференциала:
  2. Интегрирование по частям: xexdx
  3. Простейшие преобразования подынтегрального выражения (пример):
  4. Интегрирование рациональных дробей:
  5. Интегрирование простейших иррациональностей:
  6. Интегрирование выражений, содержащих тригонометрические функции: cos4(x)sin3(x)dx

Пример 1. Вычислить (3x+15)17dx.
Решение.
Возводить двучлен в 17-ю степень нецелесообразно. Исходя из табличного интеграла , получаем
= .
Пример 2. Вычислить .
Решение.
Аналогично предыдущему,
=

Пример 3. .
Решение. Поскольку
, то .

Пример 4. Вычислить
Решение. Так как
, то .

Пример 5. Вычислить .
Решение.
Применим подстановку . Отсюда x-5=t2, x=t2+5, dx=2tdt.
Подставив в интеграл, получим

=

Пример 6. Вычислить x2exdx.
Решение.
Положим u=x2, dv=exdx; тогда du=2xdx, v=ex. Применим формулу интегрирования по частям:
∫x2exdx=x2ex-2∫xex.
Мы добились понижения степени x на единицу. Чтобы найти ∫xex, применим еще раз интегрирование по частям. Полагаем u=x, dv=exdx; тогда du=dx, v=ex и
∫xex=x2ex-2xex+2ex+C.

Пример 7. Вычислить .
Решение. Выделяя целую часть, получим: .
Учитывая, что x4+5x2+4=(x2+1)(x2+4), для второго слагаемого получаем разложение

Приводя к общему знаменателю, получим равенство числителей:
-5x2–4=(Ax+B)(x2+4)+(Cx+D)(x2+1).
Приравнивая коэффициенты при одинаковых степенях x, получаем
x3: 0=A+C
x2: -5=B+D
x: 0=4A+C
x0: -4=4B+D

Отсюда находим A=C=0, B=1/3, D=-16/3.
Подставляя найденные коэффициенты в разложение и интегрируя его, получаем:


Пример 8. Вычислить .
Решение. Так как
,
то подынтегральное выражение есть рациональная функция от x и ; поэтому введем подстановку:
; ,
откуда
; ; ;.
Следовательно,

Пример 9. Вычислить .
Решение.
Подынтегральная функция рационально зависит от sinx(x) и cos(x); применим подстановку tgx/2=t, тогда
, , и
=
Возвращаясь к старой переменной, получим
= .

Пример 10. Вычислить .
Решение.
Произведем замену 1+3x8 = z2. Тогда , ;
таким образом,
.
Следует обратить внимание, что при замене переменной в определенном интеграле пределы интегрирования в общем случае изменяются.

Пример 11.Вычислить несобственный интеграл или доказать его расходимость.
Решение. Подынтегральная функция не ограничена в окрестности точки x=1. На любом же отрезке [1+ε;e] она интегрируема, так как является непрерывной функцией. Поэтому


.
Пример 12. Вычислить несобственный интеграл или доказать его расходимость.
Решение.
Подынтегральная функция непрерывна и интегрируема на R. По определению
= =
Интеграл сходится.

Пример 13. Найти площадь фигуры, ограниченной параболой y=x2 и прямой x+y=2.
Решение.
Найдем абсциссы точек пересечения параболы y=x2 и прямой y=2-x. Решая уравнение x2=2-x, находим x1=-2, x2=1. Так как фигура ограничена сверху прямой, а снизу параболой, по известной формуле находим
.

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Курсовые на заказ