Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Интегрирование тригонометрических функции

Для интегрирования рациональных функций вида R(sin x, cos x) применяют подстановку , которая называется универсальной тригонометрической подстановкой. Тогда . Универсальная тригонометрическая подстановка часто приводит к большим вычислениям. Поэтому, по возможности, пользуются следующими подстановками.
  1. Если R(-sin(x),cosx) = -R(sin(x),cosx), то делают замену cos(x)=t и тогда sin(x)dx = -dt.
  2. При R(sin(x),-cosx) = - R(sin(x),cosx), полагают sin(x)=t при этом cos(x)dx=dt
  3. В случае R(-sin(x),-cosx) = R(sin(x),cosx) делают замену tg(x)=t, при которой x=arctg(t), , или замену ctg(x)=t, если это удобнее.

Интегрирование функций рационально зависящих от тригонометрических функций

1. Интегралы вида sinnxdx, cosnxdx, n>0
a) Если n нечётное, то одну степень sinx (либо cosx) следует внести под знак дифференциала, а от оставшейся чётной степени следует перейти к противоположной функции.
б) Если n чётное, то пользуемся формулами понижения степени
2sin2x=1-cos2x, 2cos2x=1+cos2x.
2. Интегралы вида tgnxdx, ctgnxdx, где n – целое.
Необходимо использовать формулы

3. Интегралы вида sinnx·cosmx dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x, если n - нечётное либо t=cos x, если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin2x=1-cos2x, 2cos2x=1+cos2x.
4. Интегралы вида
Если числа m и n одинаковой чётности, то используем подстановку t=tg x. Часто бывает удобным применить приём тригонометрической единицы.
5. sin(nx)·cos(mx)dx, cos(mx)·cos(nx)dx, sin(mx)·sin(nx)dx

Воспользуемся формулами преобразования произведения тригонометрических функций в их сумму:

С помощью данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.


dx

Также рекомендуется ознакомиться с возможностью нахождения интегралов онлайн.

Примеры
1. Вычислить интеграл cos4x·sin3xdx.
Делаем замену cos(x)=t. Тогда cos4x·sin3xdx =
2. Вычислить интеграл .
Делая замену sin x=t, получаем


3. Найти интеграл .
Делаем замену tg(x)=t. Подставляя, получаем

Заметим, что замена ctg(x)=t здесь удобнее, так как тогда , и поэтому

Интегрирование выражений вида R(sinx, cosx)

Пример №1. Вычислить интегралы:

Решение.
а) Интегрирование выражений вида R(sinx, cosx), где R — рациональная функция от sin x и cos x, преобразуются в интегралы от рациональных функций с помощью универсальной тригонометрической подстановки tg(x/2) = t.
Тогда имеем


Универсальная тригонометрическая подстановка дает возможность перейти от интеграла вида R(sinx, cosx) dx к интегралу от дробно-рациональной функции, но часто такая замена ведет к громоздким выражениям. При определенных условиях эффективными оказываются более простые подстановки:
В данном случае для нахождения интеграла
применим универсальную тригонометрическую подстановку tg(x/2) = t.
Тогда
=
или
Так как дробь правильная, то, представляем в виде суммы интегралов:


Возвращась к исходной переменной будем иметь

b) Во втором примере рассмотрим важный частный случай, когда общее выражение R(sinx, cosx) dx имеет вид sinmx·cosnxdx. В этом частном случае, если m нечетно, следует применить подстановку cos x = t. Если нечетно n, следует применить подстановку sin x = t. Если оба показателя тип — четные неотрицательные числа (в частности, одно из них может быть равным нулю), то выполняют замену по известным тригонометрическим формулам:
В данном случае

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Курсовые на заказ