Определитель матрицы
Найти определитель матрицы
Решить онлайн
Примеры решений Ранг матрицы Метод Крамера Умножение матриц Определитель матрицы Метод обратной матрицы Обратная матрица Метод Гаусса онлайн LU разложение матрицы Производная онлайн

Понятие о ранге матрицы

Число r называется рангом матрицы A, если:
1) в матрице A есть минор порядка r, отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA, rA или r.
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.

Назначение сервиса. Онлайн-калькулятор предназначен для нахождения ранга матрицы. При этом решение сохраняется в формате Word и Excel. см. пример решения.

Инструкция. Выберите размерность матрицы, нажмите Далее.
Выберите размерность матрицы x

Определение. Пусть дана матрица ранга r. Любой минор матрицы, отличный от нуля и имеющий порядок r, называется базисным, а строки и столбцы его составляющие – базисными строками и столбцами.
Согласно этому определению, матрица A может иметь несколько базисных миноров.

Ранг единичной матрицы E равен n (количеству строк).

Пример 1. Даны две матрицы , и их миноры , . Какой из них можно принять в качестве базисного?
Решение. Минор M1=0, поэтому он не может быть базисным ни для одной из матриц. Минор M2=-9≠0 и имеет порядок 2, значит его можно принять в качестве базисного матриц A или / и B при условии, что они имеют ранги, равные 2. Поскольку detB=0 (как определитель с двумя пропорциональными столбцами), то rangB=2 и M2 можно взять за базисный минор матрицы B. Ранг матрицы A равен 3, в силу того, что detA=-27≠0 и, следовательно, порядок базисного минора этой матрицы должен равняться 3, то есть M2 не является базисным для матрицы A. Отметим, что у матрицы A единственный базисный минор, равный определителю матрицы A.

Теорема (о базисном миноре). Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов).
Следствия из теоремы.

  1. Всякие (r+1) столбцов (строк) матрицы ранга r линейно зависимы.
  2. Если ранг матрицы меньше числа ее строк (столбцов), то ее строки (столбцы) линейно зависимы. Если rangA равен числу ее строк (столбцов), то строки (столбцы) линейно независимы.
  3. Определитель матрицы A равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.
  4. Если к строке (столбцу) матрицы прибавить другую строку, (столбец) умноженную на любое число, отличное от нуля, то ранг матрицы не изменится.
  5. Если в матрице зачеркнуть строку (столбец), являющуюся линейной комбинацией других строк (столбцов), то ранг матрицы не изменится.
  6. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов).
  7. Максимальное число линейно независимых строк совпадает с максимальным числом линейно независимых столбцов.

Пример 2. Найти ранг матрицы .
Решение. Исходя из определения ранга матрицы, будем искать минор наивысшего порядка, отличный от нуля. Сначала преобразуем матрицу к более простому виду. Для этого первую строку матрицы умножим на (-2) и прибавим ко второй, затем ее же умножим на (-1) и прибавим к третьей:


Поскольку вторая и третья строки пропорциональны, то одну из них можно вычеркнуть, что не изменит ранг. Получаем , так как в матрице есть минор второго порядка, отличный от нуля, а миноры более высокого порядка отсутствуют.

Пример 3. Привести данную матрицу к ступенчатому виду и определить её ранг. .
Решение. Получим нули в первом столбце, оперируя первой строкой .
Третью строку вычеркиваем, поскольку она получается умножением второй строки на 2, а в последней строке отбросим общий множитель:

График функции
Построение графика функции методом дифференциального исчисленияПостроение графика функции методом дифференциального исчисления
Решить онлайн
Матрицы
Действия над матрицами: умножение, сложение, вычитание
Действия над матрицами
Решить онлайн
Векторное произведение
abc
Решить онлайн
Курсовые на заказ