Построить график функции Производная функции dydx График 3D Упростить выражение
Примеры решений Ранг матрицы Метод Крамера Умножение матриц Определитель матрицы Метод обратной матрицы Обратная матрица Метод Гаусса онлайн LU разложение матрицы Производная онлайн

Нахождение обратной матрицы методом Жордано-Гаусса

Назначение сервиса. С помощью онлайн-калькулятора вычисляется обратная матрица посредством алгоритма Жордано-Гаусса. Обратную матрицу также можно вычислить посредством нахождения алгебраических дополнений (перейти). Результаты вычислений оформляются в отчете формата Word. Для проверки вычислений создается шаблон решения в формате Excel.
Инструкция. Для получения обратной матрицы необходимо выбрать размерность матрицы и нажать Далее.
Размерность матрицы

Скачать пример оформления

Пример. Нахождение обратной матрицы методом Жордано-Гаусса относится к точным (прямым) методам.
Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана.
После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A-1.

Запишем систему в виде:

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен 5.
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
НЭ = СЭ - (А*В)/РЭ
РЭ - разрешающий элемент (5), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:

x1 x2 x3 x4 x5 x6
5 / 5 = 1 3 / 5 = 0.6 1 / 5 = 0.2 1 / 5 = 0.2 0 / 5 = 0 0 / 5 = 0
Разрешающий элемент равен -2.2. На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника. Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:

Посмотреть таблицу
Обратная матрица A-1:

Пример №2.
Запишем систему в виде:

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен 4.
На месте разрешающего элемента получаем 1, а в самом столбце  записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Представим расчет каждого элемента в виде таблицы:

x1 x2 x3 x4 x5 x6
4 / 4 = 1 3 / 4 = 0.75 2 / 4 = 0.5 1 / 4 = 0.25 0 / 4 = 0 0 / 4 = 0


Разрешающий элемент равен -3. На месте разрешающего элемента получаем 1, а в самом столбце  записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника. Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:

Посмотреть таблицу

Обратная матрица A-1:

Обратная матрица
Нахождение обратной матрицы
Обратная матрица
Решить онлайн
Транспонирование матрицы
Транспонированная матрица
Подробнее
Скалярное произведение
Скалярное произведение векторов
Скалярное произведение векторов
Решить онлайн