Примеры решений Ранг матрицы Обратная матрица Метод Гаусса Производная онлайн Определитель матрицы Экстремум функции Линейная алгебра онлайн Правило Саррюса Метод обратной матрицы

Решение СЛАУ методом Крамера

Назначение метода Крамера: с помощью формул Крамера находится решение системы линейных уравнений. Сам метод принадлежит к прямым методам нахождения СЛАУ.
Инструкция. Выберите количество переменных, нажмите Далее. Полученное решение сохраняется в файле Word (см. пример решения СЛАУ методом Крамера). Для проверки решения автоматически генерируется шаблон в Excel.
Выберите количество переменных

Кратко алгоритм метода Крамера можно описать тремя шагами:
  1. Находим определитель D исходной матрицы A.
  2. В цикле от 1 до n заменяем i-ый столбец матрицы на столбец результатов B. Находим текущий определитель Di полученной матрицы.
  3. xi находится делением Di на D: xi = Di / D.

Суть метода Крамера демонстрирует пример нахождения переменных системы линейных уравнений.
Пример. Решить систему линейных уравнений методом Крамера.
x1 + 4x2 = 5
-2x1 + x3 = -1
2x1 + x2 + x3 = 4
Решение. Запишем систему в виде:
A =
140
-201
211

BT = (5,-1,4)
Главный определитель: ∆ = 1 • (0 • 1-1 • 1)-(-2 • (4 • 1-1 • 0))+2 • (4 • 1-0 • 0) = 15
Заменим первый столбец матрицы А на вектор результата B.
5 4 0
-1 0 1
4 1 1

Найдем определитель полученной матрицы: 1 = 5 • (0 • 1-1 • 1)-(-1 • (4 • 1-1 • 0))+4 • (4 • 1-0 • 0) = 15
x1 = 15/15 = 1
Заменим 2-ый столбец матрицы А на вектор результата B.
1 5 0
-2 -1 1
2 4 1

Определитель полученной матрицы равен 2 = 1 • (-1 • 1-4 • 1)-(-2 • (5 • 1-4 • 0))+2 • (5 • 1-(-1 • 0)) = 15
x2 = 15/15 = 1
Заменим третий столбец матрицы А на вектор результата B.
1 4 5
-2 0 -1
2 1 4

Определитель этой матрицы равен 3 = 1 • (0 • 4-1 • (-1))-(-2 • (4 • 4-1 • 5))+2 • (4 • (-1)-0 • 5) = 15
x3 = 15/15 = 1
Проверка решения:
1•1+4•1+0•1 = 5
-2•1+0•1+1•1 = -1
2•1+1•1+1•1 = 4

Вывод: