Определитель матрицы
Найти определитель матрицы
Решить онлайн
Примеры решений Ранг матрицы Обратная матрица Метод Гаусса Производная онлайн Определитель матрицы Экстремум функции Линейная алгебра онлайн Правило Саррюса Метод обратной матрицы

Вычисление определителей методом декомпозиции

Рассмотрим ещё один алгоритм вычисления определителя квадратной матрицы. Этот алгоритм основан на идее представления исходной матрицы в виде произведения двух треугольных матриц. Пусть задана квадратная матрица:
.
Представим A в виде:
A = BC,
где .
Тогда .                      
Как вычислить элементы матриц B и C? Перемножая матрицы B и C и приравнивая элементы матрицы - произведения соответствующим элементам матрицы A получим следующие вычислительные формулы:
Пример решения с использованием калькулятора.
Суть алгоритма декомпозиции основана на идее представления исходной матрицы в виде произведения двух треугольных матриц. Пусть задана квадратная матрица:
Представим A в виде: A=BC
Тогда detA=b11 • b22 • b33
Покажем пример вычислений нескольких значений матриц B и C.
Вычисляем значение элемента b11=-1
c11=-1/(-1)=1
c12=4/(-1)=-4
c13=3/(-1)=-3
Вычисляем значение элемента b21=2
Вычисляем значение элемента b22=0 - (2 • -4)=8
c22=8/8=1
c23=15/8=1.88
Вычисляем значение элемента b31=4
Вычисляем значение элемента b32=5 - (4 • -4)=21
Вычисляем значение элемента b33=-3 - (4 • -3 + 21 • 1.88)=-30.38
c33=-30.38/(-30.38)=1
B=
-100
280
421-30,38

C=
1-4-3
011,88
001

detA=(-1) • 8 • (-30.38) = 243

Ответ: 243

Экстремумы функции
Найти минимальное и максимальное значение функции
наибольшее и наименьшее значение функции
Решить онлайн
Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Парабола
d F
Как построить параболу. Каноническое уравнение параболы
Построить
Курсовые на заказ