Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Дискриминант Интегралы онлайн Пределы онлайн
Производная онлайн Ряд Тейлора Решение уравнений
Метод матриц Обратная матрица Умножение матриц

Эллипс

Эллипс – геометрическое место точек, сумма расстояний от каждой из которых до двух данных точек F1,F2 (фокусы) есть величина постоянная, равная 2a.

Элементы эллипса:
A1A2=2a - большая ось
B1B2=2b - большая ось
A1 ,A2 , B1 ,B2 , - вершины
F1(c ; 0), F2(-c ; 0) - фокусы
F1F2=2c - фокальное расстояние
c2=a2-b2
- эксцентриситет. Эксцентриситет эллипса можно рассматривать, как меру его «вытянутости»: чем больше эксцентриситет, тем меньше отношение
r1=a-εx, r2= a+εx - фокальные радиусы
- директрисы

Каноническое уравнение эллипса (координатные оси совпадают с осями эллипса):


Параметрические уравнения:

Построение графика эллипса

Каждая новая функция вводится с новой строки. Для добавления точки с координатами (x,y) достаточно указать, например, A=(sqrt(2),3.9).
Чтобы настроить вид координатной сетки (пределы по осям и стрелки) используйте Настройка координатных осей.
Эллипс также можно построить по его элементам (параметры a, b; эксцентриситет и координаты фокусов).

Построение графика эллипса по его элементам

Параметр a = Параметр b =
Эксцентриситет ε = Директрисы ±d =
Координаты фокусов F1(;), F2(;)
OX and OY d2 d1 A1 A2 B2 B1 F1 F2
см. также Кривые второго порядка (Эллипс, Окружность, Гипербола, Парабола).
Приведение кривой второго порядка к каноническому виду.
Множество точек на плоскости (составить уравнение множества точек на плоскости, отношение расстояний которых от точки A(1;-2) и от прямой x=1 равно 1/2).