Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Дискриминант Интегралы онлайн Пределы онлайн
Производная онлайн Ряд Тейлора Решение уравнений
Метод матриц Обратная матрица Умножение матриц

Смешанное произведение векторов

Смешанным (или векторно-скалярным) произведением трех векторов a, b, c (взятых в указанном порядке) называется скалярное произведение вектора a на векторное произведение b x c, т. е. число a(b x c), или, что то же, (b x c)a.
Обозначение: abc.

Назначение. Онлайн-калькулятор предназначен для вычисления смешанного произведения векторов. Полученное решение сохраняется в файле Word. Дополнительно создается шаблон решения в Excel.

a (; ; )
b (; ; )
c (; ; )
При вычислении определителя использовать правило треугольников

Признаки компланарности векторов

Три вектора (или большее число) называются компланарными, если они, будучи приведены к общему началу, лежат в одной плоскости.
Если хотя бы один из трех векторов – нулевой, то три вектора тоже считаются компланарными.

Признак компланарности. Если система a, b, c – правая, то abc>0; если левая, то abc<0. Если же векторы a, b, c компланарны, то abc=0. Иными словами обращение в нуль смешанного произведения abc есть признак компланарности векторов a,b,c.
Геометрический смысл смешанного произведения. Смешанное произведение abc трех некомпланарных векторов a, b, c равно объему параллелепипеда, построенного на векторах a, b, c, взятому со знаком плюс, если система a, b, c – правая, и со знаком минус, если эта система левая.

Свойства смешанного произведения

  1. При круговой перестановке сомножителей смешанное произведение не меняется, при перестановке двух сомножителей – меняет знак на обратный: abc=bca=cab=-(bac)=-(cba)=-(acb)
    Вытекает из геометрического смысла.
  2. (a+b)cd=acd+bcd (распределительное свойство). Распространяется на любое число слагаемых.
    Вытекает из определения смешанного произведения.
  3. (ma)bc=m(abc) (сочетательное свойство относительно скалярного множителя).
    Вытекает из определения смешанного произведения. Эти свойства позволяют применять к смешанным произведениям преобразования, отличающиеся от обычных алгебраических лишь тем, что менять порядок сомножителей можно только с учетом знака произведения.
  4. Смешанное произведение, имеющее хотя бы два равных сомножителя, равно нулю: aab=0.

Пример №1. Найти смешанное произведение. ab(3a+2b-5c)=3aba+2abb-5abc=-5abc.

Пример №2. (a+b)(b+c)(c+a)= (axb+axc+bxb+bxc)(c+a)= (axb+axc +bxc)(c+a)=abc+acc+aca+aba+bcc+bca. Все члены, кроме двух крайних, равны нулю. Кроме того, bca=abc. Поэтому (a+b)(b+c)(c+a)=2abc.

Пример №3. Вычислить смешанное произведение трех векторов a=15i+20j+5k, b=2i-4j+14k, c=3i-6j+21k.
Решение. Чтобы вычислить смешанное произведение векторов, необходимо найти определитель системы, составленной из координат векторов. Запишем систему в виде:

A =
15205
2-414
3-621
Главный определитель:
∆ = 15 • ((-4) • 21-(-6) • 14)-2 • (20 • 21-(-6) • 5)+3 • (20 • 14-(-4) • 5) = 0
Поскольку определитель равен 0, то векторы являются компланарными (лежат в одной плоскости).

Примечание. Определитель матрицы можно найти несколькими способами:

  1. методом треугольников.
  2. методом Гаусса.
  3. через алгебраические дополнения (разложением по элементам первой строки).
  4. методом декомпозиции.